Return to search

Transfer learning techniques in time series analysis

Deep learning works best with vast andd well-distributed data collections. However, collecting and annotating large data sets can be very time-consuming and expensive. Moreover, deep learning is specific to domain knowledge, even with data and computation. E.g., models trained to classify animals would probably underperform when they classify vehicles. Although techniques such as domain adaptation and transfer learning have been popularised recently, tasks in cross-domain knowledge transfer have also taken off. However, most of these works are limited to computer vision. In the domain of time series, this is relatively underexplored. This thesis explores methods to use time series data from one domain to classify data generated from another domain via transfer learning. It focuses on using accelerometer data from running recordings to improve the classification performance on jumping data based on the apparent similarity of individual recordings. Thus, transfer learning and domain adaptation techniques were used to use the learning acquired through deep model training on running sequences. This thesis has performed four experiments to test this domain similarity. The first one consists of transforming time series with the continuous wavelet transform to get both time and frequency information. The model is then pre-trained within a contrastive learning framework. However, the continuous wavelet transformation (CWT) did not improve the classification results. The following two experiments consisted of pre-training the models with self-supervised learning. The first one with a contrastive pretext-task improved the classification results, and the resilience to data decrease. The second one with a forward forecasting pretext-task improved the results when all the data was available but was very sensitive to data decrease. Finally, the domain adaptation was tested and showed interesting performances on the classification task. Although some of the employed techniques did not show improvement, pre-training using contrastive learning on the running dataset has shown great improvement to classify the jumping dataset. / Djupinlärning fungerar bäst med stora och väl distribuerade datasamlingar. Det kan dock vara mycket tidskrävande och dyrt att samla in och kommentera stora datamängder. Även med alla data och beräkningar är djupinlärning specifik för domänkunskap. Exempelvis skulle modeller som tränats för att klassificera djur förmodligen underprestera när de klassificerar fordon. Även om tekniker som domänanpassning och överföringsinlärning har populariserats på senare tid, har även uppgifter inom kunskapsöverföring mellan olika domäner tagit fart. De flesta av dessa arbeten är dock begränsade till datorseende. Inom tidsseriernas område är detta relativt outforskat. I den här avhandlingen undersöks metoder för att använda tidsseriedata från en domän för att klassificera data från en annan domän med hjälp av djupinlärning. Fokus ligger på att använda accelerometerdata från löpning för att förbättra klassificeringen av hoppdata, baserat på den uppenbara likheten mellan löpning och hoppning. Således användes tekniker för överföringsinlärning och domänanpassning för att använda den inlärning som förvärvats genom träning av djupa modeller på löpsekvenser. I den här avhandlingen har fyra experiment utförts för att testa denna domänlikhet. Det första består av att omvandla tidsserier med den kontinuerliga wavelettransformen för att få fram både tids- och frekvensinformation. Modellen förtränas sedan inom en ram för kontrastiv inlärning. Användningen av CWT förbättrade dock inte klassificeringsresultaten. De följande två experimenten bestod av att förträna modellerna med självövervakad inlärning. Det första försöket med en kontrasterande förtextuppgift förbättrade klassificeringsresultaten och motståndskraften mot dataförlust. Det andra försöket med en prognostiserande förtextuppgift förbättrade resultaten när alla data var tillgängliga, men var mycket känslig för dataförlust. Slutligen testades domänanpassningen och visade intressanta resultat i klassificeringsuppgiften. Även om några av de använda teknikerna inte visade någon förbättring, har förträning med hjälp av kontrastinlärning på löpande dataset visat sig ge stora förbättringar när det gäller klassificering av hoppdata.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-310320
Date January 2021
CreatorsSablons de Gélis, Robinson
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:941

Page generated in 0.0025 seconds