Return to search

Model-Based Design of a Fork Control System in Very Narrow Aisle Forklifts

This thesis explains the model-based design of a fork control system in a turret head operated Very Narrow Aisle forklift in order to evaluate and push the limits of the current hardware architecture. The turret head movement consists of two separate motions, traversing and rotation, which both are hydraulically actuated. The plant is thoroughly modeled in the Mathworks softwares Simulink/Simscape to assist in the design of the control system. The control system is designed in Simulink/Stateflow and code-generated to be evaluated in the actual forklift. Optimal control theory is used to generate a minimum-jerk trajectory for auto-rotation, that is simultaneous traversing and rotation with the load kept in centre. The new control system is able to control the system within the positioning requirements of +/- 10 mm and +/- 9 mrad for traversing and rotation, respectively. It also shows good overall performance in terms of robustness since it has been tested and validated with different loads and on different versions of the forklift. However, the study also shows that the non-linearities of the system, especially in the hydraulic proportional valves, causes problems in a closed-loop control system. The work serves as a proof of concept for model-based development at the company since the development time of the new control system was significantly lower than for the original control system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-138049
Date January 2017
CreatorsBodin, Erik, Davidsson, Henric
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Reglerteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds