Return to search

Tilting and Relative Theories in Subcategories

We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3]. We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26]

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-1825
Date January 2008
CreatorsMohammed, Soud
PublisherNorges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Fakultet for informasjonsteknologi, matematikk og elektroteknikk
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDoktoravhandlinger ved NTNU, 1503-8181 ; 2008:39

Page generated in 0.0015 seconds