We show that, over an artin algebra, the tilting functor preserves (co)tilting modules in the subcategories associated to the functor. We also give a sufficient condition for the category of modules of finite projective dimension over an artin algebra to be contravariantly finite in the category of all finitely generated modules over the artin algebra. This is a sufficient condition for the finitistic dimension of the artin algebra to be finite [3]. We also develop relative theory and in certain subcategories of the module category over an artin algebra in the sense of [10,11]. We use the theory to generalize the main result of [26]
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ntnu-1825 |
Date | January 2008 |
Creators | Mohammed, Soud |
Publisher | Norges teknisk-naturvitenskapelige universitet, Fakultet for informasjonsteknologi, matematikk og elektroteknikk, Fakultet for informasjonsteknologi, matematikk og elektroteknikk |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Doktoravhandlinger ved NTNU, 1503-8181 ; 2008:39 |
Page generated in 0.0015 seconds