Core Level Spectroscopy of Water and Ice

A core level spectroscopy study of ice and water is presented in this thesis. Combining a number of experiments and spectrum calculations based on density functional theory, changes in the local valence electronic structure are shown to be sensitive to the local H-bonding configurations. Exploiting this sensitivity, we are able to approach important scientific problems for a number of aggregation states; liquid water, the water-metal interface, bulk and surface of hexagonal ice. For the H-bonded model system hexagonal ice, we have probed the occupied valence electronic structure by x-ray emission and x-ray photoelectron spectroscopy. Stepwise inclusion of different types of interactions within density functional theory, together with a local valence electron population analysis, show that it is essential to include intermolecular charge transfer together with internal s-p rehybridizations in order to describe the changes in electronic structure seen in the experiment. The attractive electrostatic interaction between water molecules is enhanced by a decrease in Pauli repulsion. A simple electrostatic model due to charge induction from the surrounding water is unable to explain the electronic structure changes. By varying the probing depth in x-ray absorption the structure of the bulk, subsurface and surface regions is probed in a thin ice film. A pronounced continuum for fully coordinated species in the bulk is in sharp contrast to the spectrum associated with a broken symmetry at the surface. In particular molecular arrangements of water with one uncoordinated OH group have unoccupied electronic states below the conduction band that are responsible for a strong anisotropic pre-edge intensity in the x-ray absorption spectrum. The topmost layer is dominated by an almost isotropic distribution of these species, which is inconsistent with an unrelaxed surface structure. For liquid water the x-ray absorption spectrum resembles that of the ice surface, indicating a domination of species with broken hydrogen bond configurations. The sensitivity to the local hydrogen bond configuration, in particular the sensitivity to broken bonds on the donor side, allows for a detailed analysis of the liquid water spectrum. Most molecules in liquid water are found in two-hydrogen-bonded configurations with one strong donor and one strong acceptor hydrogen bond. The results, consistent with diffraction data, imply that most molecules are arranged in strongly H-bonded chains or rings embedded in a disordered cluster network. Molecular dynamics simulations are unable to describe the experimental data. The water overlayer on the close-packed platinum surface is studied using a combination of core-level spectroscopy and density functional theory. A new structure for water adsorption on close-packed transition metal surfaces is found, where a weakly corrugated non-dissociated overlayer interacts via alternating oxygen-metal and hydrogen-metal bonds. The latter results from a balance between metal-hydrogen bond formation and OH bond weakening. The ultrashort core-hole lifetime of oxygen provides a powerful probe of excited state dynamics via studies of the non-radiative or radiative decay following x-ray absorption. Electrons excited into the pre-edge state for single donor species at the ice surface remain localized long enough for early time solvation dynamics to occur and these species are suggested as strong pre-existing traps to the hydrated electron. Fully coordinated molecules in the bulk contribute to a strong conduction band with electron transfer times below 0.5 femtoseconds. Upon core-ionization, both protons are found to migrate substantial distances on a femtosecond timescale. This unusually fast proton dynamics for non-resonant excitation is captured both by theory and experiment with a measurable isotope effect.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-181
Date January 2004
CreatorsNordlund, Dennis
PublisherStockholms universitet, Fysikum, Stockholm : Fysikum
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds