• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 2
  • 2
  • Tagged with
  • 30
  • 30
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estimating diurnal patterns of water uptake by roots from detailed measurement of soil moisture and soil temperature gradients

Acosta, Alvaro January 2000 (has links)
No description available.
2

Transfer of Mass and Heat in the Cathode of Polymer Electrolyte Membrane Fuel Cell

Zamel, Nada January 2007 (has links)
The need for alternative sources of energy with low to zero emissions has led to the development of polymer electrolyte membrane fuel cells. PEM fuel cells are electro-chemical devices that convert chemical energy to electricity by using hydrogen as the fuel and oxygen as the oxidant with water as the byproduct of this reaction. One of the major barriers to the commercialization of these cells is the losses that occur at the cathode due to the slow oxygen diffusion and sluggish electrochemical reaction, which are further amplified by the presence of liquid water. Numerous numerical and mathematical models are found in the literature, which investigate the transport phenomena in the cathode and their effects on the cell performance. In this thesis, the discussion of a two-dimensional, steady state, half cell model is put forward. The conservation equations for mass, momentum, species charge and energy are solved using the commercial software COMSOL Multiphysics. The conservation equations are applied to the cathode bipolar plate, gas diffusion layer and catalyst layer. The flow of gaseous species are assumed to be uniform in the channel. The catalyst layer is assumed to be composed of a uniform distribution of catalyst, liquid water, electrolyte, and void space. The Stefan-Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Due to the low relative species' velocity, the Darcy law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is used to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. A sensitivity analysis is carried out to investigate the effects of pressure drop in the channel, permeability, inlet relative humidity and shoulder/channel ratio on the performance of the cell. Electron transport is shown to play an important role in determining the overall performance of the cathode. With a serpentine flow field, the oxygen consumption occurs more aggressively at the areas under the land since electrons are readily available at these areas. In addition, the reaction increases along the catalyst layer thickness and occurs more rapidly at the catalyst layer/membrane interface. The losses due to electron transport are much higher than those due to the proton transport. The sensitivity analysis put forward illustrated that with the increase of pressure drop along the channel flow field, the performance of the cell and liquid water removal are enhanced. Similarly, an increase in permeability of the porous material results in an increase in liquid water removal and cell performance. Further, the investigation of the inlet relative humidity effects revealed that the electrolyte conductivity has a significant effect on the performance up to a point. On a similar fashion, a decrease in shoulder/channel width ratio leads to an increase in performance and an increase in the leakage between neighboring channels. Finally, the addition of heat is shown to have a negative effect on the cell performance. Some recommendations can be drawn from the results of this thesis. It is recommended to develop a model to study the flow in the channel flow field in order to investigate the effects of the channel flow on the transport of species in the cell. Further, the geometry of the channel should be studied. Finally, the production of water should be analyzed. The analysis should be extended to investigate its production in vapor form only and its production as a mixture of vapor and liquid.
3

Transfer of Mass and Heat in the Cathode of Polymer Electrolyte Membrane Fuel Cell

Zamel, Nada January 2007 (has links)
The need for alternative sources of energy with low to zero emissions has led to the development of polymer electrolyte membrane fuel cells. PEM fuel cells are electro-chemical devices that convert chemical energy to electricity by using hydrogen as the fuel and oxygen as the oxidant with water as the byproduct of this reaction. One of the major barriers to the commercialization of these cells is the losses that occur at the cathode due to the slow oxygen diffusion and sluggish electrochemical reaction, which are further amplified by the presence of liquid water. Numerous numerical and mathematical models are found in the literature, which investigate the transport phenomena in the cathode and their effects on the cell performance. In this thesis, the discussion of a two-dimensional, steady state, half cell model is put forward. The conservation equations for mass, momentum, species charge and energy are solved using the commercial software COMSOL Multiphysics. The conservation equations are applied to the cathode bipolar plate, gas diffusion layer and catalyst layer. The flow of gaseous species are assumed to be uniform in the channel. The catalyst layer is assumed to be composed of a uniform distribution of catalyst, liquid water, electrolyte, and void space. The Stefan-Maxwell equation is used to model the multi-species diffusion in the gas diffusion and catalyst layers. Due to the low relative species' velocity, the Darcy law is used to describe the transport of gas and liquid phases in the gas diffusion and catalyst layers. A serpentine flow field is used to distribute the oxidant over the active cathode electrode surface, with pressure loss in the flow direction along the channel. A sensitivity analysis is carried out to investigate the effects of pressure drop in the channel, permeability, inlet relative humidity and shoulder/channel ratio on the performance of the cell. Electron transport is shown to play an important role in determining the overall performance of the cathode. With a serpentine flow field, the oxygen consumption occurs more aggressively at the areas under the land since electrons are readily available at these areas. In addition, the reaction increases along the catalyst layer thickness and occurs more rapidly at the catalyst layer/membrane interface. The losses due to electron transport are much higher than those due to the proton transport. The sensitivity analysis put forward illustrated that with the increase of pressure drop along the channel flow field, the performance of the cell and liquid water removal are enhanced. Similarly, an increase in permeability of the porous material results in an increase in liquid water removal and cell performance. Further, the investigation of the inlet relative humidity effects revealed that the electrolyte conductivity has a significant effect on the performance up to a point. On a similar fashion, a decrease in shoulder/channel width ratio leads to an increase in performance and an increase in the leakage between neighboring channels. Finally, the addition of heat is shown to have a negative effect on the cell performance. Some recommendations can be drawn from the results of this thesis. It is recommended to develop a model to study the flow in the channel flow field in order to investigate the effects of the channel flow on the transport of species in the cell. Further, the geometry of the channel should be studied. Finally, the production of water should be analyzed. The analysis should be extended to investigate its production in vapor form only and its production as a mixture of vapor and liquid.
4

Molecular structure and dynamics of liquid water : Simulations complementing experiments

Schlesinger, Daniel January 2015 (has links)
Water is abundant on earth and in the atmosphere and the most crucial liquid for life as we know it. It has been subject to rather intense research since more than a century and still holds secrets about its molecular structure and dynamics, particularly in the supercooled state, i. e. the metastable liquid below its melting point.  This thesis is concerned with different aspects of water and is written from a theoretical perspective. Simulation techniques are used to study structures and processes on the molecular level and to interpret experimental results. The evaporation kinetics of tiny water droplets is investigated in simulations with focus on the cooling process associated with evaporation. The temperature evolution of nanometer-sized droplets evaporating in vacuum is well described by the Knudsen theory of evaporation. The principle of evaporative cooling is used in experiments to rapidly cool water droplets to extremely low temperatures where water transforms into a highly structured low-density liquid in a continuous and accelerated fashion. For water at ambient conditions, a structural standard is established in form of a high precision radial distribution function as a result of x-ray diffraction experiments and simulations. Recent data even reveal intermediate range molecular correlations to distances of up to 17 Å in the bulk liquid. The barium fluoride (111) crystal surface has been suggested to be a template for ice formation because its surface lattice parameter almost coincides with that of the basal plane of hexagonal ice. Instead, water at the interface shows structural signatures of a high-density liquid at ambient and even at supercooled conditions. Inelastic neutron scattering experiments have shown a feature in the vibrational spectra of supercooled confined and protein hydration water which is connected to the so-called Boson peak of amorphous materials. We find a similar feature in simulations of bulk supercooled water and its emergence is associated with the transformation into a low-density liquid upon cooling. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 4: Manuscript.</p>
5

Flow- and concentration variation between the cylinders of a diesel engine

Näsström, David January 2007 (has links)
<p>The demands on tomorrows diesel engines regarding fuel consumption and emission levels keep getting more difficult to fulfill. Due to this fact, the control demand is getting bigger and bigger. To be able to comply with the Euro 6 standards, it is believed that engine control need to be conducted individually from cylinder to cylinder if the need for after-treatment systems should be minimized.</p><p>Scania’s approach to handle emission levels so far has been to use exhaust gas recirculation (EGR). To be able to optimize the use of EGR it is necessary to know how the inert gases, water and carbon dioxide, are distributed between the cylinders. The distribution variation become even more difficult to predict since the EGR is cooled, sometimes leading to condensation of some of the water content. The condensation of water and its behavior in the inlet manifold is studied in this thesis.</p><p>Different ways of measuring non-uniformity in the gas composition between cylinders with respect to EGR in general and water content in particular are evaluated. Using these results, measurements have been conducted on an engine and conclusions are drawn from them.</p><p>The conclusions are that uneven distribution of above all liquid water, due to puddle formation, have an impact on emission formation that should be accounted for in some of the examined operating conditions.</p>
6

Flow- and concentration variation between the cylinders of a diesel engine

Näsström, David January 2007 (has links)
The demands on tomorrows diesel engines regarding fuel consumption and emission levels keep getting more difficult to fulfill. Due to this fact, the control demand is getting bigger and bigger. To be able to comply with the Euro 6 standards, it is believed that engine control need to be conducted individually from cylinder to cylinder if the need for after-treatment systems should be minimized. Scania’s approach to handle emission levels so far has been to use exhaust gas recirculation (EGR). To be able to optimize the use of EGR it is necessary to know how the inert gases, water and carbon dioxide, are distributed between the cylinders. The distribution variation become even more difficult to predict since the EGR is cooled, sometimes leading to condensation of some of the water content. The condensation of water and its behavior in the inlet manifold is studied in this thesis. Different ways of measuring non-uniformity in the gas composition between cylinders with respect to EGR in general and water content in particular are evaluated. Using these results, measurements have been conducted on an engine and conclusions are drawn from them. The conclusions are that uneven distribution of above all liquid water, due to puddle formation, have an impact on emission formation that should be accounted for in some of the examined operating conditions.
7

Structure, Dynamics and Thermodynamics of Liquid Water : Insights from Molecular Simulations

Wikfeldt, Kjartan Thor January 2011 (has links)
Water is a complex liquid with many unusual properties. Our understanding of its physical, chemical and biological properties is greatly advanced after a century of dedicated research but there are still many unresolved questions. If answered, they could have important long-term consequences for practical applications ranging from drug design to water purification. This thesis presents results on the structure, dynamics and thermodynamics of liquid water. The focus is on theoretical simulations applied to interpret experimental data from mainly x-ray and neutron scattering and spectroscopy techniques. The structural sensitivity of x-ray and neutron diffraction is investigated using reverse Monte Carlo simulations and information on the pair-correlation functions of water is derived. A new method for structure modeling of computationally demanding data sets is presented and used to resolve an inconsistency between experimental extended x-ray absorption fine-structure and diffraction data regarding oxygen-oxygen pair-correlations. Small-angle x-ray scattering data are modeled using large-scale classical molecular dynamics simulations, and the observed enhanced scattering at supercooled temperatures is connected to the presence of a Widom line emanating from a liquid-liquid critical point in the deeply supercooled high pressure regime. An investigation of inherent structures reveals an underlying structural bimodality in the simulations connected to disordered high-density and ordered low-density molecules, providing a clearer interpretation of experimental small-angle scattering data. Dynamical anomalies in supercooled water observed in inelastic neutron scattering experiments, manifested by low-frequency collective excitations resembling a boson peak, are investigated and found to be connected to the thermodynamically defined Widom line. Finally, x-ray absorption spectra are calculated for simulated water structures using density functional theory. An approximation of intra-molecular zero-point vibrational effects is found to significantly improve the relative spectral intensities but a structural investigation indicates that the classical simulations underestimate the amount of broken hydrogen bonds. / Vatten är en komplex vätska med flera ovanliga egenskaper. Vår förståelse av dess fysiska, kemiska och biologiska egenskaper har utvecklats mycket sedan systematiska vetenskapliga studier började genomföras för mer än ett sekel sedan, men många viktiga frågor är fortfarande obesvarade. En ökad förståelse skulle på sikt kunna leda till framsteg inom viktiga områden så som medicinutveckling och vattenrening. Denna avhandling presenterar resultat kring vattnets struktur, dynamik och termodynamik. Fokusen ligger på teoretiska simuleringar som använts för att tolka experimentella data från huvudsakligen röntgen- och neutronspridning samt spektroskopier. Den strukturella känsligheten i röntgen- och neutrondiffraktionsdata undersöks via reverse Monte Carlo metoden och information om de partiella parkorrelationsfunktionerna erhålls. En ny metod för strukturmodellering av beräkningsintensiva data presenteras och används för att lösa en motsägelse mellan experimentell diffraktion och EXAFS angående syre- syre parkorrelationsfunktionen. Data från röntgensmåvinkelspridning modelleras med storskaliga klassiska molekyldynamiksimuleringar, och den observerade förhöjda småvinkelspridningen vid underkylda temperaturer kopplas till existensen av en Widomlinje härrörande från en vätske- vätske kritisk punkt i det djupt underkylda området vid höga tryck. En undersökning av inherenta strukturer i simuleringarna påvisar en underliggande strukturell bimodalitet mellan molekyler i oordnade högdensitetsregioner respektive ordnade lågdensitetsregioner, vilket ger en tydligare tolkning av den experimentella småvinkelspridningen. Dynamiska anomalier i underkylt vatten som har observerats i inelastisk neutronspridning, speciellt förekomsten av lågfrekventa excitationer som liknar en bosontopp, undersöks och kopplas till den termodynamiskt definierade Widomlinjen. Slutligen presenteras densitetsfunktionalberäkningar av röntgenabsorptionsspektra för simulerade vattenstrukturer. En approximation av intramolekylära nollpunktsvibrationseffekter förbättrar relativa intensiteteri spektrumen avsevärt, men en strukturanalys visar att klassiska simuleringar av vatten underskattar andelen brutna vätebindningar. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 6: Submitted. Paper 7: Submitted. Paper 8: Manuscript. Paper 9: Submitted.
8

Reaction and growth mechanism of metal nanostructures formed at the electrochemically polarizable interfaces between ionic liquids and water / イオン液体と水との間の電気化学分極界面に形成される金属ナノ構造の反応と成長のメカニズム

Zhang, Yu 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22459号 / 工博第4720号 / 新制||工||1737(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 作花 哲夫, 教授 安部 武志, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
9

Analysis of Water Content Profiles in Arctic Mixed-Phase Clouds during VERDI

Lauermann, Felix, Finger, Fanny, Ehrlich, André, Wendisch, Manfred 03 November 2017 (has links)
Airborne measurements of liquid water content (LWC) and ice water content (IWC) were performed in mixed-phase clouds during the field campaign VERDI in Canada in April and May 2012. In single-layer and multi-layer clouds different vertical profiles of LWC and IWC could be observed. For single layer clouds the maximum LWC occurred in the upper half of the clouds while the IWC had a maximum near the cloud base. This pattern was attributed to the sedimentation of ice particles. In the lowest cloud layer of a multi-layer system both LWC and IWC reached a maximum near cloud top. Together with measured particles size distributions this suggests the presence of the seeder-feeder-process described by Fleishauer et al. (2012) for mid-level clouds. / Im Rahmen der VERDI-Kampagne im April und Mai 2012 in Kanada wurden flugzeuggetragene Messungen von Flüssigwassergehalt (LWC) und Eiswassergehalt (IWC) durchgeführt. Für Einschicht- und Mehrschichtwolkensysteme konnten unterschiedliche Vertikalprofile von LWC und IWC nachgewiesen werden. In Einschichtsystemen wurden die größten Flüssigwassergehalte in der oberen Wolkenhälfte und die größten Eiswassergehalte nahe der Wolkenunterkante gemessen. Diese Verteilung wurde auf die Sedimentation von Eispartikeln zurückgeführt. In der untersten Wolkenschicht eines Mehrschichtsystems befanden sich die Maxima von LWC und IWC nahe der Wolkenoberkante. Diese Beobachtung deutet zusammen mit gemessenen Partikelgrößenverteilungen auf das Vorhandensein des Seeder-Feeder- Prozesses hin, welcher von Fleishauer et al. (2012) für mittelhohe Wolken beschrieben wurde.
10

Fog and fog deposition: A novel approach to estimate the occurrence of fog and the amount of fog deposition: a case study for Germany

Körner, Philipp 07 December 2021 (has links)
This thesis is written as a cumulative dissertation. It presents methods and results which contribute to an improved understanding of the spatio-temporal variability of fog and fog deposition. The questions to be answered are: When is there how much fog, and where and how much fog is deposited on the vegetation as fog precipitation? Freely available data sets serve as a database. The meteorological input data are obtained from the Climate Data Center (CDC) of the German Meteorological Service (DWD). Station data for temperature, relative humidity and wind speed in hourly resolution are used. In addition, visibility data are used for validation purposes. Furthermore, Global Forest Heights (GFH) data from the National Aeronautics and Space Administration (NASA) are used as vegetation height data. The data from NASA’s Shuttle Radar Topography Mission (SRTM) is used as a digital elevation model. The first publication deals with gap filling and data compression for further calculations. This is necessary since the station density for hourly data is relatively low, especially before the 2000s. In addition, there are more frequent gaps in hourly data than in, for instance, daily data, which can thus be filled. It is shown that gradient boosting (gb) enables high quality gap filling in a short computing time. The second publication deals with the determination of the fog, especially with the liquid water content (lwc). Here the focus is on the correction of measurement errors of the relative humidity as well as methods of spatial interpolation are dealt with. The resulting lwc data for Germany with a temporal resolution of one hour and a spatial resolution of one kilometre, are validated against measured lwc data as well as visibility data of the DWD. The last publication uses the data and methods of the two previous publications. The vegetation and wind speed data are also used to determine fog precipitation from the lwc data. This is validated using data from other publications and water balance calculations. In addition to the measured precipitation, the fog precipitation data are used as an input variable for the modelling. This is also one of the possible applications: To determine precipitation from fog, which is not recorded by standard measuring methods, and thus to make water balance modelling more realistic.:1 MOTIVATION 6 2 PROBLEM DEFINITION AND TARGET SETTING 6 3 STRUCTURE 7 4 MODEL LIMITS 9 5 PUBLICATIONS 9 6 OUTLOOK 29

Page generated in 0.0818 seconds