Return to search

Evolution of the G protein-coupled receptor signaling system : Genomic and phylogenetic analyses

Signal transduction pathways mediated by G protein-coupled receptors (GPCRs) and their intracellular coupling partners, the heterotrimeric G proteins, are crucial for several physiological functions in eukaryotes, including humans. This thesis describes a broad genomic survey and extensive comparative phylogenetic analysis of GPCR and G protein families from a wide selection of eukaryotes. A robust mining of GPCR families in fungal genomes (Paper I) provides the first evidence that homologs of the mammalian families of GPCRs, including Rhodopsin, Adhesion, Glutamate and Frizzled are present in Fungi. These findings further support the hypothesis that all main GPCR families share a common origin. Moreover, we clarified the evolutionary hierarchy by showing for the first time that Rhodopsin family members are found outside metazoan lineages. We also characterized the GPCR superfamily in two important model organisms (Amphimedon queenslandica and Saccoglossus kowalevskii) that belong to different metazoan phyla and which differ greatly in morphological characteristics. Curation of the GPCR superfamily (Paper II) in Amphimedon queenslandica (an important model to understand evolution of animal multicellularity) reveals the presence of four of the five GRAFS families and several other GPCR gene families. However, we find that the sponge GPCR subset is divergent from GPCRs in other studied bilaterian and eumetazoan lineages. Mapping of the GPCR superfamily (Paper III) in a hemichordate Saccoglossus kowalevskii (an essential model to understand the evolution of the chordate body plan) revealed the presence of all major GPCR GRAFS families. We find that S. kowalevskii encodes local expansions of peptide and somatostatin- like GPCRs. Furthermore, we delineate the overall evolutionary hierarchy of vertebrate-like G protein families (Paper IV) and provide a comparative perspective with GPCR repertoires. The study also maps the individual gene gain/loss events of G proteins across holozoans with more expanded invertebrate taxon sampling than earlier reports. In addition, Paper V describes a broad survey of nematode chemosensory GPCR families and provides insights into the evolutionary events that shaped the GPCR mediated chemosensory system in protostomes. Overall, our findings further illustrate the evolutionary hierarchy and the diversity of the major components of the G protein-coupled receptor signaling system in eukaryotes.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-258956
Date January 2015
CreatorsKrishnan, Arunkumar
PublisherUppsala universitet, Funktionell farmakologi, Uppsala University, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 1116

Page generated in 0.0023 seconds