Return to search

Inheritance and linkage of morphological, isozyme and RAPD markers in grasspea

Experiments were conducted to determine the outcrossing rate, the inheritance of markers and establish a basic linkage map in grasspea, <i> Lathyrus sativus </i>L. The outcrossing rate in a white-flowered line of grasspea ranged from 1.7 to 2.7% among eight combinations of gene frequency and location. The outcrossing rate in this study (2.2 ± 0.7%) suggests that individual lines of grasspea should be maintained in isolation to maintain their genetic integrity. Inheritance and linkage were determined for one morphological, 11 isozyme and 72 RAPD markers in five F<sub>2</sub> populations (all RAPD markers were in one F<sub>2</sub> population). The inheritance of flower colour was monogenic with colour dominant over white. The isozymes, ACO-1, ACO-2, AAT-1, AAT-2, EST-6, FDH, LAP-1, PGD-2, SKDH and TPI-1, were codominantly expressed with monogenic inheritance. The isozymes LAP-1 and PGD-2 segregated in a non-Mendelian ratios in the crosses PI 426891.1.3 x PI 283564c.3.2 and PI 426891.1 x PI 172930.4, respectively. The isozymeEST-3 was monogenically inherited and dominantly expressed. Most RAPD markers segregated in a 3:1 ratio. Marker UBC368<sub>425/655</sub> segregated in a co-dominant fashion. The RAPD markers UBC304<sub>831</sub>, UBC304<sub>964</sub>, UBC308<sub>990</sub>, UBC322<sub>1432</sub>, UBC328<sub>831</sub>, UBC332<sub>1118</sub>, UBC3321<sub>1581</sub>, UBC333<sub>617</sub>, UBC349<sub>752<?sub>, UBC365<sub>1013</sub> and UBC388<sub>459</sub> showed distorted segregation. In two F<sub>2</sub> populations, PI 283564c.3 x PI 426885.2 and PI 358601.5 x PI 173714.5, a linkage between AAT-2 and SKDH was reconfirmed. In the cross PI 426891.1.3 x PI 283564c.3.2, one morphological, three isozyme and 71 RAPD markers were mapped resulting in the delineation of 14 linkage groups including 69 markers (1 morphological, 3 isozyme and 65 RAPD markers). The total genome length covered by these 75 markers (69 linked and six unlinked) was about 864 cM. Considering cost, simplicity and abundance, RAPD analysis was more efficient than isozyme analysis in developing linkage map.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-10212004-000651
Date01 January 1997
CreatorsChowdhury, Mahboob Alam
ContributorsSlinkard, Alfred
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-10212004-000651
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds