Return to search

Demonstration of a Completely Described Swirling Jet Experiment Used for Numerical Validation

This thesis demonstrates the standard for the design of an experimental model to be used for numerical validation purposes. It is proposed that numerical models may be assessed more accurately and directly by validation with a completely described experimental model, consisting of accurate descriptions of the operating conditions, fluid properties, and experimental uncertainties. This idea is demonstrated using an experimental model of a swirling jet at three Reynolds numbers (Re = 550, 2560, and 3650), with vortex breakdown existing in the higher two Reynolds number cases. Measurements of the swirling jet were obtained at two locations upstream of the jet exit with the intent to provide the flow profiles to the numerical model and four downstream locations used to assess the accuracy of the model. Numerical simulations using the laminar model and k-e, k-w, and k-e-v^2-f turbulence models were used for turbulence closure. Detached Eddy Simulation (DES) and Reynolds-stress model results were also obtained to demonstrate unsteady numerical solutions. The results of the experimental and numerical models are compared to understand the influence on validation using a completely described experimental model.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1445
Date01 May 2009
CreatorsWilson, Brandon M.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0022 seconds