Spelling suggestions: "subject:"swirling tet"" "subject:"swirling beet""
1 |
[en] MASS TRANSFER TO SWIRL IMPINGING JETS / [pt] TRANSFERÊNCIA DE MASSA PARA JATOS ESPIRALADOS E INCIDENTESLUIZ GUSTAVO DA CRUZ DUARTE 07 July 2015 (has links)
[pt] O presente trabalho é um estudo experimental das características de troca de calor e massa de um jato de ar incidindo ortogonalmente sobre uma placa. o estudo tem por objetivo avaliar a influência nos coeficientes de troca da presença de um componente circunferencial na velocidade do jato. Durante os experimentos foram investigadas a influência do número de Reynolds do jato, da distância jato/placa e da intensidade do escoamento espiralado (número de swirl).
Os coeficientes de troca foram determinados utilizando-se a técnica de sublimação de naftaleno em conjunto com a analogia entre os provessos de transferência de calor e massa. Coeficientes de troca de massa locais foram determinados utilizando-se uma mesa de coordenadas computadorizada especialmente construída, que permitiu a obtenção de medidas detalhadas tanto na região de estagnação do jato quanto na região mais externa. Coeficientes globais de troca de massa foram obtidos independentemente dos locais através de pesagem.
Os resultados demonstraram uma diminuição nos coeficientes de troca de massa do jato com o aumento da intensidade do escoamento espiralado.
Visualizações do escoamento junto à placa foram realizadas, utilizando-se a técnica de óleo com o negro de fumo. Os resultados das visualizações demonstraram a existência de regiões de separação junto à fronteira da zona de estagnação. Para altos valores do número de swirl foram verificadas fortes reversões do escoamento na região de estagnação. / [en] The present work is an experimental study of the mass transfer characteristics of a swirling jet impinging on a flat plate. The main objective of the investigation was to determine the influence of a circumferential velocity component (the swirl component) on the local and average mass transfer coefficients at the plate surface. The dimensionless parameters investigated were the jet Reynolds number, the jet-to-plate distance, and the strength of the swirl flow given by the swirl number.
Mass transfer coefficients were obtained utilizing the naphthalene sublimation technique. The local coefficients were determined employing a computerized coodinate table which allowed a detailed study of the effects of the presence of the swirl component. Average coefficients were determined independently through precision weighing, and displayed excellent agreement with the integrated local coefficients.
The results demonstrated that the presence of the swirl component decreases the mass transfer coefficients, when compared with the non-swirl case.
Flow visualization experiments were conducted utilizing the oil-lamp black technique. The results revealed regions of reverse flow at the stagnation zone for high values of the swirl number.
|
2 |
Experimental study of passive scalar mixing in swirling jet flowsÖrlü, Ramis January 2006 (has links)
<p>Despite its importance in various industrial applications there is still a lack of experimental studies on the dynamic and thermal field of swirling jets in the near-field region. The present study is an attempt to close this lack and provide new insights on the effect of rotation on the turbulent mixing of a <i>passive scalar</i>, on turbulence (joint) statistics as well as the turbulence structure.</p><p>Swirl is known to increase the spreading of free turbulent jets and hence to entrain more ambient fluid. Contrary to previous experiments, which leave traces of the swirl generating method especially in the near-field, the swirl was imparted by discharging a slightly heated air flow from an axially rotating and thermally insulated pipe (6 m long, diameter 60 mm). This gives well-defined axisymmetric streamwise and azimuthal velocity distributions as well as a well-defined temperature profile at the jet outlet. The experiments were performed at a <i>Reynolds</i> number of 24000 and a swirl number (ratio between the angular velocity of the pipe wall and the bulk velocity in the pipe) of 0.5.</p><p>By means of a specially designed combined X-wire and cold-wire probe it was possible to simultaneously acquire the instantaneous axial and azimuthal velocity components as well as the temperature and compensate the former against temperature variations. The comparison of the swirling and non-swirling cases clearly indicates a modification of the turbulence structure to that effect that the swirling jet spreads and mixes faster than its non-swirling counterpart. It is also shown that the streamwise velocity and temperature fluctuations are highly correlated and that the addition of swirl drastically increases the streamwise<i> passive scalar</i> flux in the near field.</p>
|
3 |
Demonstration of a Completely Described Swirling Jet Experiment Used for Numerical ValidationWilson, Brandon M. 01 May 2009 (has links)
This thesis demonstrates the standard for the design of an experimental model to be used for numerical validation purposes. It is proposed that numerical models may be assessed more accurately and directly by validation with a completely described experimental model, consisting of accurate descriptions of the operating conditions, fluid properties, and experimental uncertainties. This idea is demonstrated using an experimental model of a swirling jet at three Reynolds numbers (Re = 550, 2560, and 3650), with vortex breakdown existing in the higher two Reynolds number cases. Measurements of the swirling jet were obtained at two locations upstream of the jet exit with the intent to provide the flow profiles to the numerical model and four downstream locations used to assess the accuracy of the model. Numerical simulations using the laminar model and k-e, k-w, and k-e-v^2-f turbulence models were used for turbulence closure. Detached Eddy Simulation (DES) and Reynolds-stress model results were also obtained to demonstrate unsteady numerical solutions. The results of the experimental and numerical models are compared to understand the influence on validation using a completely described experimental model.
|
4 |
Experimental study of passive scalar mixing in swirling jet flowsÖrlü, Ramis January 2006 (has links)
Despite its importance in various industrial applications there is still a lack of experimental studies on the dynamic and thermal field of swirling jets in the near-field region. The present study is an attempt to close this lack and provide new insights on the effect of rotation on the turbulent mixing of a passive scalar, on turbulence (joint) statistics as well as the turbulence structure. Swirl is known to increase the spreading of free turbulent jets and hence to entrain more ambient fluid. Contrary to previous experiments, which leave traces of the swirl generating method especially in the near-field, the swirl was imparted by discharging a slightly heated air flow from an axially rotating and thermally insulated pipe (6 m long, diameter 60 mm). This gives well-defined axisymmetric streamwise and azimuthal velocity distributions as well as a well-defined temperature profile at the jet outlet. The experiments were performed at a Reynolds number of 24000 and a swirl number (ratio between the angular velocity of the pipe wall and the bulk velocity in the pipe) of 0.5. By means of a specially designed combined X-wire and cold-wire probe it was possible to simultaneously acquire the instantaneous axial and azimuthal velocity components as well as the temperature and compensate the former against temperature variations. The comparison of the swirling and non-swirling cases clearly indicates a modification of the turbulence structure to that effect that the swirling jet spreads and mixes faster than its non-swirling counterpart. It is also shown that the streamwise velocity and temperature fluctuations are highly correlated and that the addition of swirl drastically increases the streamwise passive scalar flux in the near field. / QC 20101124
|
5 |
Transition and Acoustic Response of Vortex Breakdown Modes in Unconfined Coaxial Swirling Flow and FlameSanthosh, R January 2015 (has links) (PDF)
The efficient and enhanced mixing of heat and incoming reactants is achieved in modern gas turbine systems by employing swirling flows. This is realized by a low velocity region (internal recirculation zone -IRZ) zone resulting from vortex breakdown phenomenon. Besides, IRZ acts as effective flame holder/stabilization mode. Double concentric swirling jet is employed in plethora of industrial applications such as heat exchange, spray drying and combustion. As such, understanding essential features of vortex breakdown induced IRZ and its acoustic response in swirling flow/flame is important in thermo-acoustic instability studies.
The key results of the present experimental investigation are discussed in four parts. In the first part, primary transition (sub-critical states) from a pre-vortex breakdown (Pre-VB) flow reversal to a fully-developed central toroidal recirculation zone (CTRZ) in a non-reacting, double-concentric swirling jet configuration is discussed when the swirl number is varied in the range 0.592 S 0.801. This transition proceeds with the formation of two intermediate, critical flow regimes. First, a partially-penetrated vortex breakdown bubble (VBB) is formed that indicates the first occurrence of an enclosed structure resulting in an opposed flow stagnation region. Second, a metastable transition structure is formed that marks the collapse of inner mixing vortices. In this study, the time-averaged topological changes in the coherent recirculation structures are discussed based on the non-dimensional modified Rossby number (Rom) which appears to describe the spreading of the zone of swirl influence in different flow regimes. The second part describes a secondary transition from an open-bubble type axisymmetric vortex breakdown (sub-critical states) to partially-open bubble mode (super-critical states) through an intermediate, critical regime of conical sheet formation for flow modes Rom ≤ 1 is discussed when the swirl number (S) is increased beyond 0.801.
In the third part, amplitude dependent acoustic response of above mentioned sub and supercritical flow states is discussed. It was observed that the global acoustic response of the sub-critical VB states was fundamentally different from their corresponding super-critical modes. In particular, with a stepwise increase in excitation amplitude till a critical value, the sub-critical VB topology moved downstream and radially outward. Beyond a critical magnitude, the VB bubble transited back upstream and finally underwent radial shrinkage at the threshold
excitation amplitude. On the other hand, the topology of the super-critical VB state continuously moved downstream and radially outwards and finally widened/fanned-out at threshold amplitude.
In the final part, transition in time-averaged flame global flame structure is reported as a function of geometric swirl number. In particular, with a stepwise increase in swirl intensity, primary transition is depicted as a transformation from zero-swirl straight jet flame to lifted flame with blue base and finally to swirling seated flame. Further, a secondary transition is reported which consists of transformation from swirling seated flame to swirling flame with a conical tailpiece and finally to highly-swirled near blowout ultra-lean flame. For this purpose, CH* chemiluminescence imaging and 2D PIV in meridional planes were employed. Three baseline fuel flow rates through the central fuel injection pipe were considered. For each of the fuel flow cases (Ref), six different co-airflow rate settings (Rea) were employed. The geometric swirl number (SG) was increased in steps from zero till blowout for a particular fuel and co-airflow setting. A regime map (SG vs Rea) depicting different regions of flame stabilization were then drawn for each fuel flow case. The secondary transformation is explained on the basis of physical significance of Rom.
|
6 |
Dynamics of Hollow Cone Spray in an Unconfined, Isothermal, Co-Annular Swirling Jet EnvironmentSunil, Sanadi Dilip January 2015 (has links) (PDF)
The complex multiphase flow physics of spray-swirl interaction in both reacting and non-reacting environment is of fundamental and applied significance for a wide variety of applications ranging from gas turbine combustors to pharmaceutical drug nebulizers. Understanding the intricate dynamics between this two phase flow field is pivotal for enhancing mixing characteristics, reducing pollutant emissions and increasing the combustion efficiency in next generation combustors. The present work experimentally investigates the near and far-field break-up, dispersion and coalescence characteristics of a hollow cone spray in an unconfined, co¬annular isothermal swirling air jet environment. The experiments were conducted using an axial-flow hollow cone spray nozzle having a 0.5 mm orifice. Nozzle injection pressure (PN = 1 bar) corresponding to a Reynolds number at nozzle exit ReN = 7900 used as the test setting. At this setting, the operating Reynolds number of the co-annular swirling air stream number (Res) was varied in four distinct steps, i.e. Res = 1600, 3200, 4800 and 5600. Swirl was imparted to the co¬axial flow using a guided vane swirler with blade angle of Ф=45° (corresponding geometric swirl number SG = 0.8). Two types of laser diagnostic techniques were utilized: Particle / Droplet imaging analysis (PDIA) and shadowgraph to study the underlying physical mechanisms involved in the primary breakup, dispersion and coalescence dynamics of the spray. Measurements were made in the spray in both axial and radial directions and they indicate that Sauter Mean Diameter (SMD) in radial direction is highly reliant on the intensity of swirl imparted to the spray. The spray is subdivided into two zones as function of swirl in axial and radial direction: (1) near field of the nozzle (ligament regime) where variation in SMD arises predominantly due to primary breakup of liquid films (2) far-field of the nozzle where dispersion and collision induced coalescence of droplets is dominant. Each regime has been analyzed meticulously, by computing probability of primary break-up, probability of coalescence and spatio-temporal distribution of droplets which gives probabilistic estimate of aforementioned governing phenomena. In addition to this, spray global length scale parameters such as spray cone angle, break-up length, wavelength of liquid film has been characterized by varying Res while maintaining constant ReN.
|
7 |
[en] STUDY OF FLOW AND HEAT TRANSFER CHARACTERISTICS IN A SWIRLING IMPINGING JET / [pt] ESTUDO DO ESCOAMENTO E TRANSFERÊNCIA DE CALOR EM UM JATO ESPIRALADO INCIDENTEJULIANA KUHLMANN ABRANTES 26 October 2005 (has links)
[pt] O presente trabalho é um estudo experimental das
características de um escoamento de ar em forma de jato
espiralado, incidindo ortogonalmente sobre uma placa. Os
objetivos do estudo são: avaliar a influência da presença
de uma componente circunferencial de velocidade na
distribuição dos coeficientes locais de troca de calor,
obter campos de velocidade instantâneos no plano
axissimétrico assim como informações sobre as
características da turbulência no escoamento. Durante os
experimentos se investigou a influência da distância
jato/placa e da intensidade do escoamento espiralado
(número de Swirl). Como etapa preliminar, foi conduzido um
experimento de jato livre, para validação das técnicas de
medição de velocidade utilizadas. Os resultados foram
comparados com os da literartura e uma boa concordância
foi obtida. A distribuição espacial dos coeficientes de
troca de calor foi avaliada impondo-se um fluxo de calor
constante na placa e medindo a distribuição radial de
temperatura através de diversos termopares. Coeficientes
locais puderam então ser estimados. Os campos de
velocidades radial e axial instantâneos foram adquiridos
experimentalmente através da utilização da técnica de
Particle Image Velocimetry (PIV) e perfis de velocidade
tangencial (média e flutuações) foram obtidos a partir da
técnica Laser Doppler Velocimetry (LDV). Os resultados
mostraram que os padrões de escoamento mudam
significativamente quando a componente circunferencial de
velocidade é introduzida. Para o valor mais alto do Número
de Swirl foram verificadas fortes reversões do escoamento
na região de estagnação. / [en] The present work is an experimental study of the
characteristics of a swirling impinging air jet. The goals
of the study are: to evaluate the influence of the
presence of a circumferential velocity component in the
distribution of the local heat transfer coefficients, to
obtain instantaneous velocity fields in the axisymmetric
plane, as well as information about the turbulence
characteristics in the flow. During the experiments, the
influence of the impingement distance and swirl intensity
were investigated. As a preliminary validation of the
velocity measurement tecniques, an experimental
investigation of an axisymmetric free jet was conducted.
The results were compared with literature showing good
agreement. The spatial distribution of heat transfer
coefficients was evaluated by imposing a constant heat
flux condition to the plate and measuring temperature of
several points along the radial distance of the plate with
thermocouples. Local coefficients could then be estimated.
Instantaneous axial and radial velocity fields were
obtained with Particle Image Velocimetry (PIV) and
tangential velocity profiles (mean and fluctuations)
obtained by using Laser Doppler Velocimetry (LDV). The
results showed that the flow patterns change significantly
when the tangential component is added. For the highest
value of Swirl number, strong recirculation zones were
observed in the stagnation region.
|
8 |
Etude des transferts thermiques par batteries de jets pour la trempe du verreWannassi, Manel 16 July 2013 (has links)
La trempe à l’air est largement utilisée dans les procédés de production de verre de sécurité. L’obtention d’une distribution de contraintes adéquate requiert un refroidissement intense et homogène à la fois, et ces deux propriétés sont difficiles à obtenir sur la courte durée de la trempe. Les batteries de jets utilisées dans la plupart des systèmes de trempe produisent un refroidissement adéquat mais souffrent d’inhomogénéité, à l’origine de défauts de trempe et de casse durant le processus.L’objectif de cette thèse est d’explorer des nouvelles configurations qui améliorent l’homogénéité du refroidissement en préservant son intensité. L’approche choisie consiste à implanter des jets rotatifs dans les réseaux de manière à accentuer le mélange des jets avant impact. Les études ont été menées principalement par simulation numérique, corroborées par des visualisations par enduit gras sur un banc d’essai dédié, conçu et réalisé dans le cadre de cette thèse.La première phase a été consacrée à la conception des générateurs de jets rotatifs et à l’étude de leur dynamique en mode isolé. Le développement d’une structure tourbillonnaire se formant à l’entrée de chaque lobe du dispositif de mise en rotation a été mis en évidence. L’interaction des jets rotatifs dans le réseau de refroidissement constitue la deuxième phase. Il apparait que la structure cellulaire du schéma d’impact n’est que marginalement perturbée par les jets rotatifs et que la présence de ces derniers n’influe que peu sur la dynamique de l’écoulement. Enfin, la modélisation détaillée des transferts de chaleur sur la plaque d’impact montre que les jets rotatifs ne contribuent que faiblement au refroidissement, mais que l’interférence avec le réseau de jets simples augmente légèrement le transfert de chaleur local au niveau de leur impact. Sans avoir obtenu les résultats escomptés, cette thèse a toutefois montré la complexité du système et le couplage fort entre les phases d’alimentation et d’évacuation de l’air de refroidissement. / Air quenching is widely applied in security glass manufacturing processes. Proper residual stresses distribution requires strong and homogeneous cooling and both are difficult to achieve over the very short time of the tempering process. Jet arrays used in most processes provide with sufficient cooling but suffer from inherent inhomogeneity, leading to quality loss of the glass product and, in extreme cases, to unacceptable breaking numbers during production.The objective of the present study is to investigate ways to improve cooling homogeneity while maintaining efficiency. For this purpose, swirling jets are located inside the jet arrays to enhance jet mixing prior to impingement. Numerical simulation is performed, corroborated by oil flow visualization and a dedicated test bench has been designed and set up within the frame of this thesis.The first part was concerned with the design of swirlers and their dynamic behaviour in standalone mode. It has been shown that a vortex is forming at the inlet of each swirl compartment. Inserting the swirlers within jet arrays constitutes the seconf phase. It turns out that the cellular structure of the impingement pattern is only marginally affected by the swirlers, which have a weak influence on the flow dynamics. Last, the detailed heat transfer modeling on the impingement surface shows that the swirlers themselves do barely contribute to the overall cooling, while the coupling with the simple jet array slightly improves the local heat transfer close to the impingement area. Although the expected outcome was not achieved, this thesis showed the flow complexity as well as the strong coupling between the feeding and the exhaust phases experienced by the cooling air.
|
9 |
Experimental studies in jet flows and zero pressure-gradient turbulent boundary layersÖrlü, Ramis January 2009 (has links)
This thesis deals with the description and development of two classical turbulent shear flows, namely free jet and flat plate turbulent boundary layer flows. In both cases new experimental data has been obtained and in the latter case comparisons are also made with data obtained from data bases, both of experimental and numerical origin. The jet flow studies comprise three parts, made in three different experimental facilities, each dealing with a specific aspect of jet flows. The first part is devoted to the effect of swirl on the mixing characteristics of a passive scalar in the near-field region of a moderately swirling jet. Instantaneous streamwise and azimuthal velocity components as well as the temperature were simultaneously accessed by means of combined X-wire and cold-wire anemometry. The results indicate a modification of the turbulence structures to that effect that the swirling jet spreads, mixes and evolves faster compared to its non-swirling counterpart. The high correlation between streamwise velocity and temperature fluctuations as well as the streamwise passive scalar flux are even more enhanced due to the addition of swirl, which in turn shortens the distance and hence time needed to mix the jet with the ambient air. The second jet flow part was set out to test the hypothesis put forward by Talamelli & Gavarini (Flow, Turbul. & Combust. 76), who proposed that the wake behind a separation wall between two streams of a coaxial jet creates the condition for an absolute instability. The experiments confirm the hypothesis and show that the instability, by means of the induced vortex shedding, provides a continuous forcing mechanism for the control of the flow field. The potential of this passive mechanism as an easy, effective and practical way to control the near-field of interacting shear layers as well as its effect towards increased turbulence activity has been shown. The third part of the jet flow studies deals with the hypothesis that so called oblique transition may play a role in the breakdown to turbulence for an axisymmetric jet.For wall bounded flows oblique transition gives rise to steady streamwise streaks that break down to turbulence, as for instance documented by Elofsson & Alfredsson (J. Fluid Mech. 358). The scenario of oblique transition has so far not been considered for jet flows and the aim was to study the effect of two oblique modes on the transition scenario as well as on the flow dynamics. For certain frequencies the turbulence intensity was surprisingly found to be reduced, however it was not possible to detect the presence of streamwise streaks. This aspect must be furher investigated in the future in order to understand the connection between the turbulence reduction and the azimuthal forcing. The boundary layer part of the thesis is also threefold, and uses both new data as well as data from various data bases to investigate the effect of certain limitations of hot-wire measurements near the wall on the mean velocity but also on the fluctuating streamwise velocity component. In the first part a new set of experimental data from a zero pressure-gradient turbulent boundary layer, supplemented by direct and independent skin friction measurements, are presented. The Reynolds number range of the data is between 2300 and 18700 when based on the free stream velocity and the momentum loss thickness. Data both for the mean and fluctuating streamwise velocity component are presented. The data are validated against the composite profile by Chauhan et al. (Fluid Dyn. Res. 41) and are found to fulfil recently established equilibrium criteria. The problem of accurately locating the wall position of a hot-wire probe and the errors this can result in is thoroughly discussed in part 2 of the boundary layer study. It is shown that the expanded law of the wall to forth and fifth order with calibration constants determined from recent high Reynolds number DNS can be used to fix the wall position to an accuracy of 0.1 and 0.25 l_ * (l_* is the viscous length scale) when accurately determined measurements reaching y+=5 and 10, respectively, are available. In the absence of data below the above given limits, commonly employed analytical functions and their log law constants, have been found to affect the the determination of wall position to a high degree. It has been shown, that near-wall measurements below y+=10 or preferable 5 are essential in order to ensure a correctly measured or deduced absolute wall position. A number of peculiarities in concurrent wall-bounded turbulent flow studies, was found to be associated with a erroneously deduced wall position. The effect of poor spatial resolution using hot-wire anemometry on the measurements of the streamwise velocity is dealt with in the last part. The viscous scaled hot-wire length, L+, has been found to exert a strong impact on the probability density distribution (pdf) of the streamwise velocity, and hence its higher order moments, over the entire buffer region and also the lower region of the log region. For varying Reynolds numbers spatial resolution effects act against the trend imposed by the Reynolds number. A systematic reduction of the mean velocity with increasing L+ over the entire classical buffer region and beyond has been found. A reduction of around 0.3 uƬ, where uƬ is the friction velocity, has been deduced for L+=60 compared to L+=15. Neglecting this effect can lead to a seemingly Reynolds number dependent buffer or log region. This should be taken into consideration, for instance, in the debate, regarding the prevailing influence of viscosity above the buffer region at high Reynolds numbers. We also conclude that the debate concerning the universality of the pdf within the overlap region has been artificially complicated due to the ignorance of spatial resolution effects beyond the classical buffer region on the velocity fluctuations. / QC 20100820
|
Page generated in 0.0598 seconds