Return to search

Fluoro-Silane as a Functional Monomer for Protein Conformational Imprinting

By using the technology of molecularly imprinted polymer (MIP), we propose to synthesize a protein conformational imprint that also acts as a plastic enzyme, inducing protein structural transitions. The imprint aims at MIP-induced stabilization and / or formation of bound protein secondary structure and the applications associated with analysis and correction of misfolded proteins. The screening of polymeric functional monomers being able to induce the conformational transitions in proteins is investigated in this report.
The fluoro-silanes (3-heptafluoroisopropoxy)propalethoxysilane (7F) and 3,3,3-trifluoropropylmethoxysilane (3F) were employed as functional monomers for synthesis of this catalytic protein conformational imprint via sol-gel reactions. 3F was demonstrated superior to 7F for fluoro-modification of tetraethylorthosilicate (TEOS) gel in terms of retaining gel transparency and increasing hydrophobicity while maintaining a uniform distribution of encapsulated protein. Both hydrolyzed 3F and polymerized 3F exhibited strong influences on structure transitions of three template proteins: bovine serum albumin (BSA), beta-lactoglobulin (BLG), and bovine carbonic anhydrase (BCA). The formation of molten globule intermediates that stabilized by increased alpha-helices was induced by the trifluoro-silane in BLG and BCA. Additionally, 3F was effective at a lower concentration than the benchmark fluoro-alcohol 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), validating the application of 3F as a functional monomer for protein conformational imprinting.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-1902
Date01 May 2011
CreatorsPeng, Yun
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0019 seconds