Return to search

Characterization of Volatile and Metabolite Compounds Produced by Lactococcus lactis in Low-Fat and Full-Fat Cheddar Cheese Extract

This study was conducted to compare and contrast potential aroma compounds in the headspace and small molecule metabolites produced as a result of starter culture metabolism in a full-fat and low-fat cheddar cheese model system. Past studies have indicated differences in the headspace flavor compound profiles between full-fat and low-fat Cheddar cheeses with no indication as to what compounds were produced as a result of starter culture metabolism.
Starter cultures were incubated in a Cheddar cheese extract environment that was made up of the water-soluble portion of Cheddar cheese with environmental conditions mimicking full-fat and low-fat Cheddar cheese by altering the levels of salt and milk fat globular membrane in the system. Incubation times were up to 14 days at 30°C and samples were taken at days 0, 1, 7, and 14. Headspace analysis was accomplished using solid phase micro-extraction coupled with GC-MS and small metabolites were monitored using metabolomic methods coupled with GC-MS.
Results indicate that the starter culture was responsible for an increase in the concentration of propan-2-one, heptan-2-one, 3-methylbutanal, heptanal, benzaldehyde, 2-ethylhexanal, and dimethyl trisulfide in both the full-fat and low-fat medias when compared to their respective controls. While heptanal was present at a higher concentration in the full-fat treatments compared to the low-fat treatments and 2- ethylhexan-1-ol and isothiocyanato cyclohexane were present at higher concentrations in the low-fat treatments compared to the full-fat treatments.
Principal component analysis for the headspace compounds showed a clear separation of the treatments with heptanal, p-cymene, nonan-2-one, and undecan-2-one contributing the most to the variation between the full-fat and low-fat samples, while 3- methylbutanal, heptan-2-one, benzaldehyde, 2-ethylhexan-1-ol, 2,6-dimethylheptan-4-ol, and 3-methylbutanol contributed the most to the variation between the controls and treatments.
The metabolomics data for both the bacteria and Cheddar cheese extract did not provide a clear separation between the full-fat and low-fat samples.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2009
Date01 August 2011
CreatorsYoung, Michael J.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds