Return to search

Novel templating of three-dimensional hyaluronic acid soft tissue scaffolds

Effective tissue engineering scaffolds should mimic the physical and chemical attributes of native tissue. Native tissues have intricate patterns, a multitude of porosities, and large water contents that are each directly associated with their ability to regulate and support life function. Therefore, the physical architecture of scaffolds intended to mimic these tissues for engineering applications plays an important role in scaffold performance both in vitro and in vivo. Self-assembling molecules organize into intricate patterns with a complexity that resembles that of native tissue. Hyaluronic acid (HA) hydrogels are widely used in tissue engineering for a variety of applications but fail to offer physical architecture beyond the inherent hydrogel porosity.
To address this issue, a novel method to impose architecture within thin HA-based films using crystal nucleation was developed in the Schmidt lab [1]. The work described herein extends this method for use in three-dimensional matrices, with the main vii
goal being the creation of hydrogels with a complex macroarchitecture. Four in situ self-assembling molecules were used: glycine, guanidine, urea and potassium dihydrogen phosphate. The crystallization of each molecule creates a specific porous network within the hydrogel that is the negative imprint of the crystalline geometry. The novel restriction of aqueous polymer into the molecule interstitial crystalline space allows hydrogels to embody complex geometric lumen architectures. The hydrogels were characterized in terms of their internal architectures, swelling, bulk moduli, biodegradability, cytotoxicity and in vitro cellular response. The unique structure-property relationships displayed by hydrogels templated by each of the crystallizing molecules were characterized in regards to mechanical properties.
The need for complex microscopic architecture is conserved over many tissue engineering applications and templated scaffolds were evaluated for two unique applications. Crystal-templated hydrogels were investigated for use as an artificial stem cell niche environment to expand undifferentiated neural progenitor cells. Additionally, the templated hydrogels were evaluated for the in vitro study of myelin expression from Schwann cells. A hydrogel that combines the biocompatible properties of HA and the architectural complexity of native tissue may prove beneficial for biomedical applications. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23104
Date10 February 2014
CreatorsThomas, Richelle Czarina
Source SetsUniversity of Texas
Languageen_US
Detected LanguageEnglish
Formatapplication/pdf

Page generated in 0.0021 seconds