Return to search

Dynamic and Post-Dynamic Microstructure Evolution in Additive Friction Stir Deposition

Metal additive manufacturing stands poised to disrupt multiple industries with high material use efficiency and complex part production capabilities, however many technologies deposit material with sub-optimal properties, limiting their use. This decrease in performance largely stems from porosity laden parts, and asymmetric solidification-based microstructures. Solid-state additive manufacturing techniques bypass these flaws, using deformation and diffusion phenomena to bond material together layer by layer. Among these techniques, Additive Friction Stir Deposition (AFSD), stands out as unique for its freeform nature, and thermomechanical conditions during material processing. Leveraging its solid-state behavior, optimized microstructures produced by AFSD can reach performance levels near, at, or even above traditionally prepared metals. A strong understanding of the material conditions during AFSD and the phenomena responsible for microstructure evolution. Here we discuss two works aimed at improving the state of knowledge surrounding AFSD, promoting future microstructure optimization. First, a parametric study is performed, finding a wide array of producible microstructures across two material systems. In the second work, a stop-action type experiment is employed to observe the dynamic microstructure evolution across the AFSD material flow pathway, finding specific thermomechanical regimes that occur within. Finally, multiple conventional alloy systems are discussed as their microstructure evolution pertains to AFSD, as well as some more unique systems previously limited to small lab scale techniques, but now producible in bulk due to the additive nature of AFSD. / Doctor of Philosophy / The microstructure of a material describes the atomic behavior at multiple length scales. In metals this microstructure generally revolves around the behavior of millions of individual crystals of metal combined to form the bulk material. The state and behavior of these crystals and the atoms that make them up influence the strength and usability of the material and can be observed using various high fidelity characterization techniques. In metal additive manufacturing (i.e. 3D printing) the microstructure experiences rapid and severe changes which can alter the final properties of the material, typical to a detrimental effect. Given the other benefits of additive manufacturing such as reduced costs and complex part creation, there is desire to predict and control the microstructure evolution to maximize the usability of printed material. Here, the microstructure evolution in a solid-state metal additive manufacturing, Additive Friction Stir Deposition (AFSD), is investigated for different metal material systems. The solid-state nature of AFSD means no melting of the metal occurs during processing, with deformation forcing material together layer by layer. The conditions experienced by the material during printing are in a thermomechanical regime, with both heating and deformation applied, akin to common blacksmithing. In this work specific microstructure evolution phenomena are discussed for multiple materials, highlighting how AFSD processing can be adjusted to change the resulting microstructure and properties. Additionally, specific AFSD process interactions are studied and described to provide better insight into cumulative microstructure evolution throughout the process. This work provides the groundwork for investigating microstructure evolution in AFSD, as well as evidence and results for a number of popular metal systems.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/104664
Date17 August 2021
CreatorsGriffiths, Robert Joseph
ContributorsMaterials Science and Engineering, Yu, Hang, Dickenson, Roger Conley, Reynolds, William T. Jr., Cai, Wenjun
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsCreative Commons Attribution-NonCommercial 4.0 International, http://creativecommons.org/licenses/by-nc/4.0/

Page generated in 0.0025 seconds