Return to search

Multi-Scale Physics Based Modeling of Tire Rolling Resistance Considering Aging

Every moment of every day, at least hundreds of thousands of tires roll across a surface throughout the world. Tires are indisputably important in our daily life. The tire's primary component is rubber, which consumes energy when it rotates on a substrate due to the viscoelastic material's internal friction: a phenomenon referred to as rolling resistance. The interaction between the tire and the road surface is one of the most intricate and crucial phenomena in an automobile, because it is responsible for creating forces, moments, and deformation in the tire. Additionally, the road's roughness interacts with the tire and contributes significantly to its performance.
This dissertation aims to develop a comprehensive physics-based model for predicting the rolling resistance of a viscoelastic material due to dynamic deformations caused by tire rotation using an analytical approach. The model was developed by proposing a Gaussian wave function propagating across a tire circumference's viscoelastic medium. The wave function was selected to describe the displacement field produced by tire-road interaction. Additionally, by adopting a multi-scale modeling technique, the model was upgraded to estimate rolling resistance while taking into account surface roughness at all length scales, from macroscopic to microscopic. Additionally, another mathematical model was developed using the Fourier series approach to evaluate the steady-state stress response and energy dissipation for any harmonic and non-harmonic periodic strain signals.
Additionally, the dissertation strove to build a continuum damage mathematical model using a combined testing/modeling methodology to predict the aging of Styrene-Butadiene Rubber (SBR) after continuous exposure to the atmosphere. The obtained model was developed through the implementation of optimization techniques while formulating a mathematical model, which was then combined with a physics-based model to predict rolling resistance while taking into account rubber aging.
Calibration of hyperelastic and viscoelastic material models with testing data was performed using an optimization technique that yielded sufficient results. The results of all mathematical models obtained in this dissertation are reported subsequently. The stress response of a viscoelastic material under harmonic and non-harmonic strain input yielded good agreement with the FEA model obtained using ABAQUS. The rolling resistance behavior under various operating conditions, including texture and aging effects, was reported, and the results aligned with the experimental results found in the literature. / Doctor of Philosophy / Every moment of every day, hundreds of thousands of automobile tires roll across a surface somewhere in the world. A tire is an undeniably important part of everyday life. Rubber is the tire's main component, and when it rotates on a surface, it loses energy, resulting in a force that resists motion, known as rolling resistance force. The contact between the tire and the road is one of the most complicated and important phenomena that happens in an automobile because it is responsible for the vehicle's dynamic performance in areas such as acceleration, stopping distance, and stability. Another factor that affects tire and car performance and should be taken into account is the road's roughness.
This dissertation used an analytical method to come up with an accurate physics-based model for predicting the rolling resistance force of a viscoelastic material caused by tire rotation. The model was developed by assuming a Gaussian wave function would move across the tire circumference. Additionally, using a multi-scale modeling technique, the model was improved so that it could calculate the value of rolling resistance force considering surface roughness in all lengths of scale. This project also developed an additional mathematical model using the Fourier series method to determine how the stress response and energy dissipation would behave for any harmonic and nonharmonic periodic strain signals. Additionally, the dissertation presents the developing of a continuum damage mathematical model that could predict the material property of styrene-butadiene rubber (SBR) after being exposed to the air for a long time (i.e., aged). The model was developed based on experimental data and optimization techniques. This model was then combined with a physics-based model to predict rolling resistance force while taking aging into account. The material models were defined using an optimization method that yielded good results. The stress response of a viscoelastic material when it was subjected to harmonic and non-harmonic strain was in good agreement with the Finite Element Analysis (FEA) model made with ABAQUS. Rolling resistance behavior was observed, and the results were consistent with those found in the literature.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/109422
Date22 March 2022
CreatorsAlkandari, Waleed M. M. A.
ContributorsMechanical Engineering, Taheri, Saied, Shahab, Shima, Kennedy, Ronald H., Ragab, Saad A.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds