Return to search

Deep Gaussian Process Surrogates for Computer Experiments

Deep Gaussian processes (DGPs) upgrade ordinary GPs through functional composition, in which intermediate GP layers warp the original inputs, providing flexibility to model non-stationary dynamics. Recent applications in machine learning favor approximate, optimization-based inference for fast predictions, but applications to computer surrogate modeling - with an eye towards downstream tasks like Bayesian optimization and reliability analysis - demand broader uncertainty quantification (UQ). I prioritize UQ through full posterior integration in a Bayesian scheme, hinging on elliptical slice sampling of latent layers. I demonstrate how my DGP's non-stationary flexibility, combined with appropriate UQ, allows for active learning: a virtuous cycle of data acquisition and model updating that departs from traditional space-filling designs and yields more accurate surrogates for fixed simulation effort. I propose new sequential design schemes that rely on optimization of acquisition criteria through evaluation of strategically allocated candidates instead of numerical optimizations, with a motivating application to contour location in an aeronautics simulation. Alternatively, when simulation runs are cheap and readily available, large datasets present a challenge for full DGP posterior integration due to cubic scaling bottlenecks. For this case I introduce the Vecchia approximation, popular for ordinary GPs in spatial data settings. I show that Vecchia-induced sparsity of Cholesky factors allows for linear computational scaling without compromising DGP accuracy or UQ. I vet both active learning and Vecchia-approximated DGPs on numerous illustrative examples and real computer experiments. I provide open-source implementations in the "deepgp" package for R on CRAN. / Doctor of Philosophy / Scientific research hinges on experimentation, yet direct experimentation is often impossible or infeasible (practically, financially, or ethically). For example, engineers designing satellites are interested in how the shape of the satellite affects its movement in space. They cannot create whole suites of differently shaped satellites, send them into orbit, and observe how they move. Instead they rely on carefully developed computer simulations. The complexity of such computer simulations necessitates a statistical model, termed a "surrogate", that is able to generate predictions in place of actual evaluations of the simulator (which may take days or weeks to run). Gaussian processes (GPs) are a common statistical modeling choice because they provide nonlinear predictions with thorough estimates of uncertainty, but they are limited in their flexibility. Deep Gaussian processes (DGPs) offer a more flexible alternative while still reaping the benefits of traditional GPs. I provide an implementation of DGP surrogates that prioritizes prediction accuracy and estimates of uncertainty. For computer simulations that are very costly to run, I provide a method of sequentially selecting input configurations to maximize learning from a fixed budget of simulator evaluations. I propose novel methods for selecting input configurations when the goal is to optimize the response or identify regions that correspond to system "failures". When abundant simulation evaluations are available, I provide an approximation which allows for faster DGP model fitting without compromising predictive power. I thoroughly vet my methods on both synthetic "toy" datasets and real aeronautic computer experiments.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/114845
Date27 April 2023
CreatorsSauer, Annie Elizabeth
ContributorsStatistics, Gramacy, Robert B., Higdon, David, Van Mullekom, Jennifer H., Ferreira, Marco A. R.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0021 seconds