Return to search

Revealing the Determinants of Acoustic Aesthetic Judgment Through Algorithmic

This project represents an important first step in determining the fundamental aesthetically relevant features of sound. Though there has been much effort in revealing the features learned by a deep neural network (DNN) trained on visual data, little effort in applying these techniques to a network trained on audio data has been performed. Importantly, these efforts in the audio domain often impose strong biases about relevant features (e.g., musical structure). In this project, a DNN is trained to mimic the acoustic aesthetic judgment of a professional composer. A unique corpus of sounds and corresponding professional aesthetic judgments is leveraged for this purpose. By applying a variation of Google's "DeepDream" algorithm to this trained DNN, and limiting the assumptions introduced, we can begin to listen to and examine the features of sound fundamental for aesthetic judgment. / Master of Science / The question of what makes a sound aesthetically “interesting” is of great importance to many, including biologists, philosophers of aesthetics, and musicians. This project serves as an important first step in determining the fundamental aesthetically relevant features of sound. First, a computer is trained to mimic the aesthetic judgments of a professional composer; if the composer would deem a sound “interesting,” then so would the computer. During this training, the computer learns for itself what features of sound are important for this classification. Then, a variation of Google’s “DeepDream” algorithm is applied to allow these learned features to be heard. By carefully considering the manner in which the computer is trained, this algorithmic “dreaming” allows us to begin to hear aesthetically salient features of sound.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/91186
Date03 July 2019
CreatorsJenkins, Spencer Daniel
ContributorsComputer Science, Jantzen, Benjamin C., Huang, Bert, Lee, Sang Won
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds