Return to search

Transitive Factorizations of Permutations and Eulerian Maps in the Plane

The problem of counting ramified covers of a Riemann surface up to homeomorphism was proposed by Hurwitz in the late 1800's. This problem translates combinatorially into factoring a permutation with a specified cycle type, with certain conditions on the cycle types of the factors, such as minimality and transitivity.
Goulden and Jackson have given a proof for the number of minimal, transitive factorizations of a permutation into transpositions. This proof involves a partial differential equation for the generating series, called the Join-Cut equation. Furthermore, this argument is generalized to surfaces of higher genus. Recently, Bousquet-M&eacute;lou and Schaeffer have found the number of minimal, transitive factorizations of a permutation into arbitrary unspecified factors. This was proved by a purely combinatorial argument, based on a direct bijection between factorizations and certain objects called <em>m</em>-Eulerian trees.
In this thesis, we will give a new proof of the result by Bousquet-M&eacute;lou and Schaeffer, introducing a simple partial differential equation. We apply algebraic methods based on Lagrange's theorem, and combinatorial methods based on a new use of Bousquet-M&eacute;lou and Schaeffer's <em>m</em>-Eulerian trees. Some partial results are also given for a refinement of this problem, in which the number of cycles in each factor is specified. This involves Lagrange's theorem in many variables.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/1128
Date January 2005
CreatorsSerrano, Luis
PublisherUniversity of Waterloo
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatapplication/pdf, 1153003 bytes, application/pdf
RightsCopyright: 2005, Serrano, Luis. All rights reserved.

Page generated in 0.0019 seconds