Return to search

Development of Dihydrochalcone Functionalized Gold Nanoparticles for Augmented Antineoplastic Activity

Phloridzin, an antidiabetic and antineoplastic agent usually found in fruit trees, is a dihydrochalcone constituent that has a clinical/pharmaceutical significance as a sodiumglucose linked transport 2 (SGLT2) inhibitor. Phloridzin never experienced widespread clinical usage in the pharmaceutical market due to its side effects and poor bioavailability when compared to other antidiabetic therapeutics. The poor bioavailability is primarily attributed to the degradation of the glycosidic bond of the phloridzin, resulting in the formation of phloretin, the aglycone of phloridzin and glucose. While phloretin displays a reduced capacity of SGLT2 inhibition, this nutraceutical shows enhanced antineoplastic activity in comparison to phloridzin. Gold nanoparticles (AuNPs) have been explored in improving the bioavailability of many drugs and therefore we opt for gold nanoparticle mediated delivery of phloridzin and phloretin and exploration of their anticancer mechanism. In this study, we have synthesized phloridzin and phloretin conjugated gold nanoparticles (Phl-AuNP and Pht-AuNP) in a single-step, rapid, biofriendly processes. The synthesized AuNPs morphology and elemental composition was characterized via transmission electron microscopy, UV-Vis spectroscopy, scanning electron microscopyenergy dispersive x-ray spectroscopy, and thermogravimetric analysis. Assessment of the antineoplastic potency of the dihydrochalcone-conjugated AuNPs against cancerous cell lines was accomplished through monitoring via flow cytometry. We posit that the functionalization of these chalcones onto the gold nanoparticles’ surface has improved the pharmacokinetic profile of phloridzin and phloretin.

Identiferoai:union.ndltd.org:WKU/oai:digitalcommons.wku.edu:theses-2752
Date01 October 2016
CreatorsPayne, Jason N
PublisherTopSCHOLAR®
Source SetsWestern Kentucky University Theses
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses & Specialist Projects

Page generated in 0.002 seconds