Return to search

Tomographic Reconstruction of Wavefront Aberrations using Multiple Laser Guide Stars

Tomographic reconstruction using multiple laser guide stars (MLGS) will be required by the next generation of extremely large (30 m class) telescopes (ELT). Modal decomposition of wavefront phase using Zernike polynomials is a widely used technique in adaptive optics (AO) research. However, this approach breaks down with the large number of degrees of freedom required by ELTs.This research proposes the use of an alternative basis, the disk harmonic functions, to overcome the disadvantages of the Zernike basis at high spatial resolution. A method of fast, analytic, modal tomographic modeling is developed and used for fast calculation of reconstruction matrices used on-sky at the MMT telescope.The specific reconstruction techniques of ground layer adaptive optics and laser tomography adaptive optics using MLGS are presented along with the results of on-sky experiments at the MMT. In addition to developing a laser AO instrument for the MMT, these experiments provide a test bed for validating the reconstruction techniques that will be critical to the success of ELTs.An approach to using real-time wavefront sensor and deformable mirror telemetry from the MLGS system to estimate the vertical distribution of turbulence in the atmosphere is also presented.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194080
Date January 2009
CreatorsMilton, Norman Mark
ContributorsHart, Michael, Hart, Michael, Angel, J. Roger P., Hinz, Philip M.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds