Return to search

A surgical confocal microlaparoscope for real-time optical biopsies

The first real-time uorescence confocal microlaparoscope has been de- veloped that provides instant in vivo cellular images, comparable to those provided by histology, through a nondestructive procedure. The device in- cludes an integrated contrast agent delivery mechanism and a computerized depth scan system. The instrument uses a fiber bundle to relay the image plane of a slit-scan confocal microlaparoscope into tissue. The confocal laparoscope was used to image the ovaries of twenty-one patients in vivo using uorescein sodium and acridine orange as the uorescent contrast agents. The results indicate that the device is safe and functions as designed. A Monte Carlo model was developed to characterize the system performance in a scattering media representative of human tissues. The results indicate that a slit aperture has limited ability to image below the surface of tissue. In contrast, the results show that multi-pinhole apertures such as a Nipkow disk or a linear pinhole array can achieve nearly the same depth performance as a single pinhole aperture. The model was used to determine the optimal aperture spacing for the multi-pinhole apertures. The confocal microlaparoscope represents a new type of in vivo imaging device. With its ability to image cellular details in real time, it has the potential to aid in the early diagnosis of cancer. Initially, the device may be used to locate unusual regions for guided biopsies. In the long term, the device may be able to supplant traditional biopsies and allow the surgeon to identify early stage cancer in vivo.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194929
Date January 2009
CreatorsTanbakuchi, Anthony Amir
ContributorsGmitro, Arthur F, Utzinger, Urs, Schwiegerling, Jim, Rouse, Andrew
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds