Return to search

Monolithic series connected solar cell array

Single crystal silicon solar cells for use under high concentration sunlight presently exhibit the highest conversion efficiencies. The following paper represents further work done to improve the efficiency of crystalline silicon solar cells through improved design. Design features and processing to address the loss mechanisms encountered in silicon solar cells are discussed. An improved solar cell structure has resulted from this work along with a practical processing sequence. Experiments were performed to show the practicality of pattern formation on the walls of the V-groove structures using conventional photolithography and masking techniques. Also, new beam processing techniques are discussed to improve processing.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276950
Date January 1989
CreatorsRosenberg, Glenn Alan, 1960-
ContributorsSchrimpf, R.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds