Return to search

Application of Digital Micromirror Devices to Atmospheric Lidar Measurement and Calibration

A novel design for atmospheric laser radar (lidar) is presented, implementing a digital micromirror device (DMD) for use in (A) aligning transmitter and receiver boresight angles and in (B) field-of-view (FOV) control of such "DMD lidar" instruments. A novel technique is presented to extract the transmitter-receiver overlap-compensation function from ratioing data from different FOVs in the same pointing direction. DMD lidar design considerations and trades are surveyed. Principles of modeling DMD lidar performance are introduced and implemented in a performance-predictive system simulation with data-validated results. Operational capabilities of DMD lidar are demonstrated through a hardware prototype with field measurement examples. Additional capabilities offered by integrating DMD within lidar and other optical systems are presented, including single-pixel Radon-imaging techniques.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/333349
Date January 2014
CreatorsAnderton, Blake Jerome
ContributorsReagan, John, Reagan, John, Milster, Thomas, Sasián, José
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds