Return to search

Achromatic Phase Shifting Focal Plane Masks

The search for life on other worlds is an exciting scientific endeavor that could change the way we perceive our place in the universe. Thousands of extrasolar planets have been discovered using indirect detection techniques. One of the most promising methods for discovering new exoplanets and searching for life is direct imaging with a coronagraph. Exoplanet coronagraphy of Earth-like planets is a challenging task, but we have developed many of the tools necessary to make it feasible. The Phase-Induced Amplitude Apodization (PIAA) Coronagraph is one of the highest-performing architectures for direct exoplanet imaging. With a complex phase-shifting focal plane mask, the PIAA Complex Mask Coronagraph (PIAACMC) can approach the theoretical performance limit for any direct detection technique. The architecture design is flexible enough to be applied to any arbitrary aperture shape, including segmented and obscured apertures. This is an important feature for compatibility with next-generation ground and space-based telescopes. PIAA and PIAACMC focal plane masks have been demonstrated in monochromatic light. An important next step for high-performance coronagraphy is the development of broadband phase-shifting focal plane masks. In this dissertation, we present an algorithm for designing the PIAA and PIAACMC focal plane masks to operate in broadband. We also demonstrate manufacturing of the focal plane masks, and show laboratory results. We use simulations to show the potential performance of the coronagraph system, and the use of wavefront control to correct for mask manufacturing errors. Given the laboratory results and simulations, we show new areas of exoplanet science that can potentially be explored using coronagraph technology. The main conclusion of this dissertation is that we now have the tools required to design and manufacture PIAA and PIAACMC achromatic focal plane masks. These tools can be applied to current and future telescope systems to enable new discoveries in exoplanet science.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/621110
Date January 2016
CreatorsNewman, Kevin, Newman, Kevin
ContributorsGuyon, Olivier, Guyon, Olivier, Hart, Michael, Milster, Tom
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds