We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+ 280225.8 (hereafter J0100+ 2802). J0100+ 2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas x5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 +/- 9.0 mu Jy beam(-1) and a total flux density of 88 +/- 19 mu Jy. The position of the radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 +/- 3.5) mas x (3.1 +/- 1.7) mas. This corresponds to a physical scale of (40 +/- 20) pc x (18 +/- 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T-B = (1.6 +/- 1.2) x 10(7) K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+ 2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/623052 |
Date | 25 January 2017 |
Creators | Wang, Ran, Momjian, Emmanuel, Carilli, Chris L., Wu, Xue-Bing, Fan, Xiaohui, Walter, Fabian, Strauss, Michael A., Wang, Feige, Jiang, Linhua |
Contributors | Univ Arizona, Steward Observ |
Publisher | IOP PUBLISHING LTD |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2017. The American Astronomical Society. All rights reserved. |
Relation | http://stacks.iop.org/2041-8205/835/i=2/a=L20?key=crossref.3f20a7bc611467c5a684bfaee7ca43ee |
Page generated in 0.0014 seconds