PROBING THE INTERSTELLAR MEDIUM AND STAR FORMATION OF THE MOST LUMINOUS QUASAR AT z = 6.3

We report new IRAM/PdBI, JCMT/SCUBA-2, and VLA observations of the ultraluminous quasar SDSS J010013.02+280225.8 (hereafter, J0100+2802) at z =. 6.3, which hosts the most massive supermassive black hole (SMBH), 1.24 x 10(10) M circle dot, that is known at z > 6. We detect the [C II] 158 mu m fine structure line and molecular CO(6-5) line and continuum emission at 353, 260, and 3 GHz from this quasar. The CO(2-1) line and the underlying continuum at 32 GHz are also marginally detected. The [C II] and CO detections suggest active star formation and highly excited molecular gas in the quasar host galaxy. The redshift determined with the [C II] and CO lines shows a velocity offset of similar to 1000 km s(-1) from that measured with the quasar Mg II line. The CO (2-1) line luminosity provides a direct constraint on the molecular gas mass, which is about (1.0 +/- 0.3) x 10(10) M circle dot We estimate the FIR luminosity to be (3.5 +/- 0.7) x 10(12) L circle dot, and the UV-to-FIR spectral energy distribution of J0100 +2802 is consistent with the templates of the local optically luminous quasars. The derived [C II]-to-FIR luminosity ratio of J0100+2802 is 0.0010 +/- 0.0002, which is slightly higher than the values of the most FIR luminous quasars at z similar to 6. We investigate the constraint on the host galaxy dynamical mass of J0100 vertical bar 2802 based on the [C II] line spectrum. It is likely that this ultraluminous quasar lies above the local SMBH-galaxy mass relationship, unless we are viewing the system at a small inclination angle.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624073
Date10 October 2016
CreatorsWang, Ran, Wu, Xue-Bing, Neri, Roberto, Fan, Xiaohui, Walter, Fabian, Carilli, Chris L., Momjian, Emmanuel, Bertoldi, Frank, Strauss, Michael A., Li, Qiong, Wang, Feige, Riechers, Dominik A., Jiang, Linhua, Omont, Alain, Wagg, Jeff, Cox, Pierre
ContributorsUniv Arizona, Steward Observ
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2016. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/0004-637X/830/i=1/a=53?key=crossref.a80dec66156546fbda2d20888fcb6c7c

Page generated in 0.002 seconds