Return to search

Improving and Assessing Planet Sensitivity of the GPI Exoplanet Survey with a Forward Model Matched Filter

We present a new matched-filter algorithm for direct detection of point sources in the immediate vicinity of bright stars. The stellar point-spread function (PSF) is first subtracted using a Karhunen-Love image processing (KLIP) algorithm with angular and spectral differential imaging (ADI and SDI). The KLIP-induced distortion of the astrophysical signal is included in the matched-filter template by computing a forward model of the PSF at every position in the image. To optimize the performance of the algorithm, we conduct extensive planet injection and recovery tests and tune the exoplanet spectra template and KLIP reduction aggressiveness to maximize the signalto- noise ratio (S/N) of the recovered planets. We show that only two spectral templates are necessary to recover any young Jovian exoplanets with minimal S/N loss. We also developed a complete pipeline for the automated detection of point-source candidates, the calculation of receiver operating characteristics (ROC), contrast curves based on. false positives, and completeness contours. We process in a uniform manner more than 330 data sets from the Gemini Planet Imager Exoplanet Survey and assess GPI typical sensitivity as a function of the star and the hypothetical companion spectral type. This work allows for the first time a comparison of different detection algorithms at a survey scale accounting for both planet completeness and false-positive rate. We show that the new forward model matched filter allows the detection of 50% fainter objects than a conventional cross-correlation technique with a Gaussian PSF template for the same false-positive rate.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/624437
Date07 June 2017
CreatorsRuffio, Jean-Baptiste, Macintosh, Bruce, Wang, Jason J., Pueyo, Laurent, Nielsen, Eric L., Rosa, Robert J. De, Czekala, Ian, Marley, Mark S., Arriaga, Pauline, Bailey, Vanessa P., Barman, Travis, Bulger, Joanna, Chilcote, Jeffrey, Cotten, Tara, Doyon, Rene, Duchene, Gaspard, Fitzgerald, Michael P., Follette, Katherine B., Gerard, Benjamin L., Goodsell, Stephen J., Graham, James R., Greenbaum, Alexandra Z., Hibon, Pascale, Hung, Li-Wei, Ingraham, Patrick, Kalas, Paul, Konopacky, Quinn, Larkin, James E., Maire, Jerome, Marchis, Franck, Marois, Christian, Metchev, Stanimir, Millar-Blanchaer, Maxwell A., Morzinski, Katie M., Oppenheimer, Rebecca, Palmer, David, Patience, Jennifer, Perrin, Marshall, Poyneer, Lisa, Rajan, Abhijith, Rameau, Julien, Rantakyro, Fredrik T., Savransky, Dmitry, Schneider, Adam C., Sivaramakrishnan, Anand, Song, Inseok, Soummer, Remi, Thomas, Sandrine, Wallace, J. Kent, Ward-Duong, Kimberly, Wiktorowicz, Sloane, Wolff, Schuyler
ContributorsUniv Arizona, Lunar & Planetary Lab
PublisherIOP PUBLISHING LTD
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
TypeArticle
Rights© 2017. The American Astronomical Society. All rights reserved.
Relationhttp://stacks.iop.org/0004-637X/842/i=1/a=14?key=crossref.c3fc0b96ce54f9d8f0cc5b4f8600b465

Page generated in 0.0032 seconds