Return to search

Optimization of Multi-Channel BCH Error Decoding for Common Cases

abstract: Error correcting systems have put increasing demands on system designers, both due to increasing error correcting requirements and higher throughput targets. These requirements have led to greater silicon area, power consumption and have forced system designers to make trade-offs in Error Correcting Code (ECC) functionality. Solutions to increase the efficiency of ECC systems are very important to system designers and have become a heavily researched area.

Many such systems incorporate the Bose-Chaudhuri-Hocquenghem (BCH) method of error correcting in a multi-channel configuration. BCH is a commonly used code because of its configurability, low storage overhead, and low decoding requirements when compared to other codes. Multi-channel configurations are popular with system designers because they offer a straightforward way to increase bandwidth. The ECC hardware is duplicated for each channel and the throughput increases linearly with the number of channels. The combination of these two technologies provides a configurable and high throughput ECC architecture.

This research proposes a new method to optimize a BCH error correction decoder in multi-channel configurations. In this thesis, I examine how error frequency effects the utilization of BCH hardware. Rather than implement each decoder as a single pipeline of independent decoding stages, the channels are considered together and served by a pool of decoding stages. Modified hardware blocks for handling common cases are included and the pool is sized based on an acceptable, but negligible decrease in performance. / Dissertation/Thesis / Masters Thesis Computer Science 2015

Identiferoai:union.ndltd.org:asu.edu/item:29932
Date January 2015
ContributorsDill, Russell (Author), Shrivastava, Aviral (Advisor), Oh, Hyunok (Committee member), Sen, Arunabha (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format64 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved

Page generated in 0.0024 seconds