Return to search

Coherent pi0 photoproduction on nuclei

The coherent nuclear ¼0 photoproduction reaction is sensitive to the nuclear matter form factor i.e. the distribution of matter within the nucleus. Accurate measurements of the nuclear matter distribution as charaterised by the r.m.s. radius are important for applications to nuclear theories, neutron stars, atomic parity non-conservation and heavy ion collisions. This thesis presents the results from a new experiment to measure coherent ¼0 photoproduction on 208Pb, 40Ca, 16O and 12C. The ultimate goal of the research programme is to make a high precision measurement of the nature of the neutron skin of 208Pb. The first major step in this direction is to achieve an accurate data set of coherent pion photoproduction which is presented in this thesis. The experiment was performed in the A2 hall of the MAMI electron accelerator facility at the InstitÄut fur Kernphysik, Mainz, Germany. An 883 MeV beam of electrons was directed on to a 10¹m nickel radiator producing a Bremsstrahlung photon beam which was then 'tagged' with a resolution of 2 MeV using the Glasgow Photon Tagging Spectrometer. The photon beam was incident on one of the 4 experimental targets inducing the reaction A(°,¼0)A. The neutral ¼0s were then detected via their two photon decay in the newly installed 4¼ Crystal Ball and TAPS detector systems. The results from all four targets are presented as differential and total cross sections covering the energy range E°=(135-300) MeV and covering the full 180± of the pion polar angle. Comparisons have been made with previous data and with the latest theoretical calculations of Dreschel et. al. which employ detailed pion optical potentials in describing the pion-nucleus final state interaction. It is concluded that the 208Pb cross sections show good agreement with the calculations indicating that the pion-nucleus FSI distortions are well accounted for by the model. A pleasing reduction in statistical and systematic uncertainties from previous measurements is also observed. While the 208Pb cross sections are finalised it is suggested that the 12C and 16O data would benefit from a further analysis utilising the coincident detection of nuclear decay photons to isolate incoherent events and allow a more detailed comparison with theory. A first comparison of the theoretical model with the new high quality data gives first indications of a neutron skin on 208Pb. A future scheme for the full detailed extraction of the matter distribution from the new data set is also suggested.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562124
Date January 2007
CreatorsTarbert, Claire M.
ContributorsWatts, Dan
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/3501

Page generated in 0.0025 seconds