• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Coherent pi0 photoproduction on nuclei

Tarbert, Claire M. January 2007 (has links)
The coherent nuclear ¼0 photoproduction reaction is sensitive to the nuclear matter form factor i.e. the distribution of matter within the nucleus. Accurate measurements of the nuclear matter distribution as charaterised by the r.m.s. radius are important for applications to nuclear theories, neutron stars, atomic parity non-conservation and heavy ion collisions. This thesis presents the results from a new experiment to measure coherent ¼0 photoproduction on 208Pb, 40Ca, 16O and 12C. The ultimate goal of the research programme is to make a high precision measurement of the nature of the neutron skin of 208Pb. The first major step in this direction is to achieve an accurate data set of coherent pion photoproduction which is presented in this thesis. The experiment was performed in the A2 hall of the MAMI electron accelerator facility at the InstitÄut fur Kernphysik, Mainz, Germany. An 883 MeV beam of electrons was directed on to a 10¹m nickel radiator producing a Bremsstrahlung photon beam which was then 'tagged' with a resolution of 2 MeV using the Glasgow Photon Tagging Spectrometer. The photon beam was incident on one of the 4 experimental targets inducing the reaction A(°,¼0)A. The neutral ¼0s were then detected via their two photon decay in the newly installed 4¼ Crystal Ball and TAPS detector systems. The results from all four targets are presented as differential and total cross sections covering the energy range E°=(135-300) MeV and covering the full 180± of the pion polar angle. Comparisons have been made with previous data and with the latest theoretical calculations of Dreschel et. al. which employ detailed pion optical potentials in describing the pion-nucleus final state interaction. It is concluded that the 208Pb cross sections show good agreement with the calculations indicating that the pion-nucleus FSI distortions are well accounted for by the model. A pleasing reduction in statistical and systematic uncertainties from previous measurements is also observed. While the 208Pb cross sections are finalised it is suggested that the 12C and 16O data would benefit from a further analysis utilising the coincident detection of nuclear decay photons to isolate incoherent events and allow a more detailed comparison with theory. A first comparison of the theoretical model with the new high quality data gives first indications of a neutron skin on 208Pb. A future scheme for the full detailed extraction of the matter distribution from the new data set is also suggested.
2

First measurement of F double polarisation observable in pion photoproduction

Hall Barrientos, Pauline Elizabeth January 2013 (has links)
The composite structure of the nucleon leads to a spectrum of excited states, or resonances, which contain important constraints on the dynamics and interactions of its constituents. A major world programme measuring meson photoproduction from the nucleon is currently under way to improve our knowledge of this fundamental spectrum. These new generation of measurements exploit polarisation degrees of freedom of the incident photon along with spin degrees of freedom in the target and recoiling nucleons. The meson photoproduction process can be described by 16 independent experimental observables. To fully constrain the four underlying complex photoproduction amplitudes requires the measurement of a least 8 of these. Measurements of double polarisation observables, where the photon beam and nucleon target are polarised are crucial to achieve this requirement. This thesis will present the analysis and extraction of the first preliminary measurement of the double polarisation observable. F in the single pion photoproduction reaction γ→ + p →n + π+ was undertaken to measure both F and T. The resulting measurement of polarisation observables from this reaction in conjunction with with those from the Pπ0 channel will provide stringent constraints on partial wave analyses aiming to extract precision information on the properties of the low lying nucleon resonances.
3

Beam asymmetry measurement from pion photoproduction on the neutron

Sokhan, Daria January 2010 (has links)
The resonance spectrum of the nucleon gives direct information on the dynamics and interactions of its constituents. This offers an important challenge to the theoretical models of nucleon structure, including the emerging Lattice QCD predictions, conformal field theories and more phenomenological, QCD-based approaches. Although the various models predict different features for the excitation spectra, the experimental information is currently of too poor quality to differentiate between these models. Pion photoproduction from the nucleon is a powerful probe of the spectrum as most resonances are expected to couple to the pion decay channel. However, cross-sections alone are not sensitive enough to allow identification of the underlying excitation spectrum, as the resonances have energy widths larger than their separations. A major world effort is underway to additionally measure polarisation observables in the production process. For a model-independent analysis a “complete” set of single- and doublepolarisation observables needs to be measured in experiments involving polarised beams, targets and a means of determining recoil nucleon polarisation. In particular, the beam asymmetry is a critical observable for the constraint of partial wave analyses (PWA) used to extract the nucleon excitation spectrum from the data. Almost all of the available world data on the beam asymmetry has been taken on the proton, with the neutron dataset sparse, containing only three experiments at fixed angles and in a limited photon energy range. The lack of extensive data on the neutron is a major deficiency, as different resonances have very different electromagnetic couplings to the proton and neutron. As a result, the data from the two targets will have very different relative contributions from, and sensitivities to, the spectrum of nucleon resonances. Moreover, neutron data is essential for the separation of the isoscalar and isovector components of the reaction amplitudes. This thesis presents a very high statistics measurement of the photon beam asymmetry on the neutron with close-to-complete angular coverage and a wide range of invariant mass (1610 – 2320 MeV) extending over the third resonance region, where the excitation spectrum is particularly ill defined. The experiment was conducted at the Thomas Jefferson National Accelerator Facility (JLab) using a tagged, linearly polarised photon beam, a liquid deuterium target and the CEBAF Large Acceptance Spectrometer (CLAS). The quality and quantity of the data has allowed an invariantmass resolution of 10 MeV and an angular resolution of 0.1 in the cosine of the centre-of-mass pion production angle, θ. Good agreement is evident in the regions where there is kinematic overlap with sparse previous data. Comparison of the new data is made with the two main partial wave analyses, SAID andMAID. Significant discrepancy is observed at backward θ with SAID (across most of the energy range) and MAID (up to ∼ 1750 MeV) and also below ∼ 35◦ in θ with both analyses. This extensive new dataset will help significantly to constrain partial wave analyses and will be a crucial part of the current world effort to use meson photoproduction to tackle long-standing uncertainties in the fundamental excitation spectrum of the nucleon. As a first step towards this the refitting of the SAID partial wave analysis incorporating the new data was carried out and shows very significant changes in the properties of the magnetic P11, P13, D13, D35, F15, G17 and G19 partial waves.
4

Parity violating asymmetries in the Gº experiment: Pion photoproduction on the Δ resonance

Coppens, Alexandre Francois Constant 13 September 2010 (has links)
Symmetry tests and more precisely parity violation experiments using the properties of the weak interaction give us unique insight into the internal hadronic structure of matter. The Gº experiment at Jefferson Laboratory used parity violating electron scattering to probe the strange quark contribution to the electromagnetic nucleon form factors, (GMs and GEs) as well as the axial contribution, (GAe). The data taken during the experiment provide further information on the axial transition form factor of the N - $\Delta$ transition, (GANΔ), as well as the scale of the low energy constant (dΔ) characterizing the parity violating γNΔ coupling. The analysis of backward angle Gº data taken with a liquid deuterium target to deduce the parity violating asymmetry for pion photoproduction on the Δ resonance, and the first experimental constraint on the value of dΔ, are reported in this thesis. The results showed that dΔ = (8.3 ± 25.3) gπ where the uncertainty is dominated by statistics, and that 75 percent of the theory range would be excluded by this measurement at 1 sigma.
5

Parity violating asymmetries in the Gº experiment: Pion photoproduction on the Δ resonance

Coppens, Alexandre Francois Constant 13 September 2010 (has links)
Symmetry tests and more precisely parity violation experiments using the properties of the weak interaction give us unique insight into the internal hadronic structure of matter. The Gº experiment at Jefferson Laboratory used parity violating electron scattering to probe the strange quark contribution to the electromagnetic nucleon form factors, (GMs and GEs) as well as the axial contribution, (GAe). The data taken during the experiment provide further information on the axial transition form factor of the N - $\Delta$ transition, (GANΔ), as well as the scale of the low energy constant (dΔ) characterizing the parity violating γNΔ coupling. The analysis of backward angle Gº data taken with a liquid deuterium target to deduce the parity violating asymmetry for pion photoproduction on the Δ resonance, and the first experimental constraint on the value of dΔ, are reported in this thesis. The results showed that dΔ = (8.3 ± 25.3) gπ where the uncertainty is dominated by statistics, and that 75 percent of the theory range would be excluded by this measurement at 1 sigma.
6

Infrared regularization in relativistic chiral perturbation theory

Bird, Christopher Shane 14 August 2008 (has links)
Chiral perturbation theory is a useful tool in the study of low energy reactions involving light particles. However the inclusion of heavy particles in chiral perturbation theory results in large contributions from loop diagrams which violate the standard power counting scheme. We review two methods, referred to as heavy baryon chiral perturbation theory and infrared regularization, which remove the high energy effects of the heavy particles and which therefore do not violate the power counting scheme. We then use these two methods to calculate the amplitude for pion photoproduction to fourth order and prove that the two amplitudes are equivalent.
7

Infrared regularization in relativistic chiral perturbation theory

Bird, Christopher Shane 14 August 2008 (has links)
Chiral perturbation theory is a useful tool in the study of low energy reactions involving light particles. However the inclusion of heavy particles in chiral perturbation theory results in large contributions from loop diagrams which violate the standard power counting scheme. We review two methods, referred to as heavy baryon chiral perturbation theory and infrared regularization, which remove the high energy effects of the heavy particles and which therefore do not violate the power counting scheme. We then use these two methods to calculate the amplitude for pion photoproduction to fourth order and prove that the two amplitudes are equivalent.
8

Asymmetry and Cross Section Measurements of Neutral Pion Photo-Production in the Range 240-405 MeV

Ardashev, Khamit 28 October 2002 (has links)
No description available.
9

Theoretical study of halos and neutron skins through nuclear reactions and electroweak probes

Colomer Martinez, Frédéric 09 July 2020 (has links) (PDF)
One-nucleon halo nuclei are exotic nuclei which can be seen as a core around which orbits a loosely-bound valence nucleon. They are usually studied through reactions such as elastic scattering and breakup. The ratio method has been developed as a tool to study one-neutron halo nuclei at high energies. It consists of the ratio of angular cross sections, breakup and elastic scattering, which removes most of the sensitivity to the reaction mechanism and to the reaction model. In the simple recoil excitation and breakup (REB) model, the ratio simplifies to a form factor dependent solely on the wave function of the projectile. By measuring this observable and comparing it to the REB form factor, i.e. in the ratio method, more detailed information on the structure of the halo could be obtained. For neutron-halo nuclei at high energy, the ratio observable obtained from accurate CDCC and DEA theoretical calculations follows its REB prediction. I study the extension of this method to lower energies of the reaction which could make the measurement appropriate to facilities such as SPIRAL2 (GANIL, Caen, France) and ReA12 at FRIB (Michigan State University) and to proton halos. This is done by comparing the REB form factor to dynamical calculations of the ratio. The reactions investigated are the reaction of 11Be, the archetypical one-neutron halo nucleus, on 12C, 40Ca and 208Pb targets at 20 MeV/nucleon and of 8B, the archetypical one-proton halo nucleus, on 12C, 58Ni and 208Pb targets at44 MeV/nucleon.For these reactions, the adiabatic assumption is no longer valid due to the effect of the Coulomb interaction. This effect is mainly visible at forward angle for 11Be and is aggravated for 8B by the fact that the halo is charged. The ratio works less well than for neutron-halos at intermediate and high energies. Nevertheless, the ratio is shown to be very sensitive to the orbital angular momentum l0 in which the halo is bound and its binding energy E0, i.e. the single-particle structure of the projectile. Variations of l0 and E0 induce visible changes in shape and in magnitude (up to several orders) of the ratio. Also, the agreement of the ratio with its REB prediction is best when the projectile is loosely-bound and for low l0, i.e. for s and p waves. The validity of the method is not affected by the use of energy ranges—or bins— in the projectile continuum. These tend to increase the cross section without changing the agreement of the ratio with its REB prediction. The applicability of the method is finally explored at high energy for proton-rich nuclei 17F, 25Al and 27P. I show that the ratio method works the latter since this nucleus is bound by a mere 0.870 MeV in the s-wave. For the other nuclei, although the agreement of the ratio with its REB prediction is less good than for neutron-halo nuclei at high energy, it still provides estimates of nuclear-structure features, such as l0 and E0 and could be applied in what can be called an approximate application of the ratio method. Heavy nuclei exhibit a neutron skin, i.e. a thin layer around the nucleus where only neutrons are found. The thickness of the skin is highly correlated with the slope of the symmetry energy. The process of coherent neutral-pion photoproduction is used to extract the nuclear density and hence the neutron-skin thickness of heavy nuclei. In order to analyse recent data on the photoproduction on 12C, 40,48Ca, 116, 120, 124Sn and 208Pb, I build a reaction code. My model uses the formalism of Kerman, McManus and Thaler (KMT) which allows to build the photoproduction matrix on a nucleus from the ones describing the elementary process on a single nucleon. Within the impulse approximation, the photoproduction is seen as the coherent sum of the photoproduction on each of the nucleons. In the plane wave impulse approximation (PWIA), no rescattering of the pion is considered after its production and the cross section is directly proportional to the Fourier transform of the density. Such process is taken into account at the distorted wave impulse approximation (DWIA) by considering a potential simulating the pion-nucleus interaction and built from the KMT formalism.The agreement of my model with the data is good, especially for 208Pb. The distortion has a significant impact on the photoproduction process. The sensitivity of the process to the density of the target is analysed by performing the calculations with several different densities calculated in different structure models. The distortion has the effect of deteriorating this sensitivity. In the particular case of a 208Pb target, the impact of variations of the neutron-skin thickness of around 0.1 fm on the photoproduction cross section is ten times smaller than the size of the error bars on the experimental data. These results, although less dramatic, hold for the tin targets, for which preliminary data exists. In the light of these results, the coherent neutral-pion photoproduction process does not seem to be suited in the study of the neutron-skin thickness. This conclusion goes in contrast to the results of recent measurements on 208Pb, for which the method was shown to be sensitive to fine details of the density. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.1013 seconds