• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relativistic distorted wave analysis of neutrino-induced strange particle production on nuclei

Adera, Gashaw Bekele 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: See fulltext for abstract. / AFRIKAANSE OPSOMMING: Sien volteks vir opsomming.
2

Electron loss and excitation in atom-atom collisions

Spratt, David James January 1999 (has links)
No description available.
3

Nuclear Transparency and Single Particle Spectral Functions from Quasielastic A(e,e'p) Reactions up to Q2=8.1 GeV2

David McKee January 2003 (has links)
Thesis (Ph.D.); Submitted to New Mexico State Univ., Las Cruces, NM (US); 1 May 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "JLAB-PHY-03-22" "DOE/ER/40150-2731" David McKee. 05/01/2003. Report is also available in paper and microfiche from NTIS.
4

Final state effects in neutron Compton scattering measurements

Fielding, Andrew L. January 1997 (has links)
No description available.
5

A seção de choque total de reação de íons pesados e a transparência nuclear / Total cross-section of heavy ion reactions and nuclear transparency

Rego, Ricardo Affonso do 12 December 1984 (has links)
Foi calculado microscopicamente a seção de choque total de reação para os sistemas ANTPOT. 12 C + ANTPOT. 12 C, ANTPOT. 1-2 C+ ANTPOT. 40 Ca, ANTPOT. 12 C + ANTPOT. 90 Zr, ANTPOT. 12 C + ANTPOT. 208 Pb, ANTPOT. 40 Ca + ANTPOT. 40 Ca, ANTPOT. 40 Ca + ANTPOT. 208 Pb, ANTPOT. 90 Zr + ANTPOT. 90 Zr, ANTPOT. 90 Zr + ANTPOT. 208 Pb e ANTPOT. 208 Pb + ANTPOT. 208 Pb numa ampla faixa de energia. Foi usada a expressão WKB para a defasagem imaginária, na representação do parâmetro do impacto. A parte imaginária do potencial óptico foi construída, usando o primeiro termo da teoria de espalhamento múltiplo, incorporando na sua expressão o principio de Pauli. A inclusão da interação nuclear e coulombiana mostrou ser importante. Os resultados teóricos não se apresentam em bom acordo com os poucos dados experimentais existentes, a baixas energias. Este resultado foi atribuído a fraca absorção contida no potencial imaginário, que contém o processo de knock-out quase-livre como mecanismo dominante de reação. / The total reaction cross section of the systems 12C +12C, 12C + 40Ca, 12C + 90Zr, 12C + 208 Pb, 40Ca + 40Ca, 40Ca + 208Pb, 90Zr + 90Zr, 90 Zr + 208 Pb and 20B Pb + 208 Pb for a wide range of energies has been calculated microscopically. A WKB expression for the imaginary part of the optical potential has been constructed by using the first term of multiple scattering theory with the effect of Pauli blocking incorporated into it. The inclusion of the nuclear and Coulomb interactions is shown to be important. The theoretical results do not show very good agreement with the experimental data at lower energies. This is attributed to the weak absorption contained in the imaginary potential of the tpApB interaction, wich contained only quasi-free knock-out as the dominant reaction mechanism.
6

A seção de choque total de reação de íons pesados e a transparência nuclear / Total cross-section of heavy ion reactions and nuclear transparency

Ricardo Affonso do Rego 12 December 1984 (has links)
Foi calculado microscopicamente a seção de choque total de reação para os sistemas ANTPOT. 12 C + ANTPOT. 12 C, ANTPOT. 1-2 C+ ANTPOT. 40 Ca, ANTPOT. 12 C + ANTPOT. 90 Zr, ANTPOT. 12 C + ANTPOT. 208 Pb, ANTPOT. 40 Ca + ANTPOT. 40 Ca, ANTPOT. 40 Ca + ANTPOT. 208 Pb, ANTPOT. 90 Zr + ANTPOT. 90 Zr, ANTPOT. 90 Zr + ANTPOT. 208 Pb e ANTPOT. 208 Pb + ANTPOT. 208 Pb numa ampla faixa de energia. Foi usada a expressão WKB para a defasagem imaginária, na representação do parâmetro do impacto. A parte imaginária do potencial óptico foi construída, usando o primeiro termo da teoria de espalhamento múltiplo, incorporando na sua expressão o principio de Pauli. A inclusão da interação nuclear e coulombiana mostrou ser importante. Os resultados teóricos não se apresentam em bom acordo com os poucos dados experimentais existentes, a baixas energias. Este resultado foi atribuído a fraca absorção contida no potencial imaginário, que contém o processo de knock-out quase-livre como mecanismo dominante de reação. / The total reaction cross section of the systems 12C +12C, 12C + 40Ca, 12C + 90Zr, 12C + 208 Pb, 40Ca + 40Ca, 40Ca + 208Pb, 90Zr + 90Zr, 90 Zr + 208 Pb and 20B Pb + 208 Pb for a wide range of energies has been calculated microscopically. A WKB expression for the imaginary part of the optical potential has been constructed by using the first term of multiple scattering theory with the effect of Pauli blocking incorporated into it. The inclusion of the nuclear and Coulomb interactions is shown to be important. The theoretical results do not show very good agreement with the experimental data at lower energies. This is attributed to the weak absorption contained in the imaginary potential of the tpApB interaction, wich contained only quasi-free knock-out as the dominant reaction mechanism.
7

Polarized <sup>3</sup>He(e,e'n) Asymmetries in Three Orthogonal Measurements

Long, Elena A. 17 October 2012 (has links)
No description available.
8

Theoretical and computational considerations of Quasi-Free (p; 2p) reactions using the distorted-wave impulse approximation and Monte Carlo simulations in Geant4

Lisa, Nyameko 09 1900 (has links)
Under current investigation is the re-implementation of the Distorted-Wave Impulse Approximation (DWIA), originally formulated in FORTRAN by N.S. Chant and P.G. Roos, with the intention of developing it in a portable Python environment. This will be complimented by developing a GEANT4 detector simulation application. These two techniques will be used to model the (p,2p) proton knock-out reaction 40Ca(p; 2p)39K (2.52 MeV)1 2 + first excited state, at intermediate incident energies of 150 MeV. This study is a test-bed that lays the foundation and platform from which one may develop an interactive workbench and toolkit in GEANT4 which: (i.) accurately models an accelerator-detector experimental set-up, such as those found at iThemba Labs, and (ii.) incorporates the DWIA formalism as a built-in physics process within the framework of GEANT4. Furthermore the Python modules developed for the specific proton knock-out reaction studied here, can be generalized for an arbitrary set of nuclear scattering reactions and packaged as a suite of scientific Python codes. / Theoretical and Computational Nuclear Physics / M. Sc. (Theoretical and Computational Nuclear Physics)
9

Theoretical and computational considerations of Quasi-Free (p; 2p) reactions using the distorted-wave impulse approximation and Monte Carlo simulations in Geant4

Lisa, Nyameko 09 1900 (has links)
Under current investigation is the re-implementation of the Distorted-Wave Impulse Approximation (DWIA), originally formulated in FORTRAN by N.S. Chant and P.G. Roos, with the intention of developing it in a portable Python environment. This will be complimented by developing a GEANT4 detector simulation application. These two techniques will be used to model the (p,2p) proton knock-out reaction 40Ca(p; 2p)39K (2.52 MeV)1 2 + first excited state, at intermediate incident energies of 150 MeV. This study is a test-bed that lays the foundation and platform from which one may develop an interactive workbench and toolkit in GEANT4 which: (i.) accurately models an accelerator-detector experimental set-up, such as those found at iThemba Labs, and (ii.) incorporates the DWIA formalism as a built-in physics process within the framework of GEANT4. Furthermore the Python modules developed for the specific proton knock-out reaction studied here, can be generalized for an arbitrary set of nuclear scattering reactions and packaged as a suite of scientific Python codes. / Theoretical and Computational Nuclear Physics / M. Sc. (Theoretical and Computational Nuclear Physics)
10

Theoretical study of halos and neutron skins through nuclear reactions and electroweak probes

Colomer Martinez, Frédéric 09 July 2020 (has links) (PDF)
One-nucleon halo nuclei are exotic nuclei which can be seen as a core around which orbits a loosely-bound valence nucleon. They are usually studied through reactions such as elastic scattering and breakup. The ratio method has been developed as a tool to study one-neutron halo nuclei at high energies. It consists of the ratio of angular cross sections, breakup and elastic scattering, which removes most of the sensitivity to the reaction mechanism and to the reaction model. In the simple recoil excitation and breakup (REB) model, the ratio simplifies to a form factor dependent solely on the wave function of the projectile. By measuring this observable and comparing it to the REB form factor, i.e. in the ratio method, more detailed information on the structure of the halo could be obtained. For neutron-halo nuclei at high energy, the ratio observable obtained from accurate CDCC and DEA theoretical calculations follows its REB prediction. I study the extension of this method to lower energies of the reaction which could make the measurement appropriate to facilities such as SPIRAL2 (GANIL, Caen, France) and ReA12 at FRIB (Michigan State University) and to proton halos. This is done by comparing the REB form factor to dynamical calculations of the ratio. The reactions investigated are the reaction of 11Be, the archetypical one-neutron halo nucleus, on 12C, 40Ca and 208Pb targets at 20 MeV/nucleon and of 8B, the archetypical one-proton halo nucleus, on 12C, 58Ni and 208Pb targets at44 MeV/nucleon.For these reactions, the adiabatic assumption is no longer valid due to the effect of the Coulomb interaction. This effect is mainly visible at forward angle for 11Be and is aggravated for 8B by the fact that the halo is charged. The ratio works less well than for neutron-halos at intermediate and high energies. Nevertheless, the ratio is shown to be very sensitive to the orbital angular momentum l0 in which the halo is bound and its binding energy E0, i.e. the single-particle structure of the projectile. Variations of l0 and E0 induce visible changes in shape and in magnitude (up to several orders) of the ratio. Also, the agreement of the ratio with its REB prediction is best when the projectile is loosely-bound and for low l0, i.e. for s and p waves. The validity of the method is not affected by the use of energy ranges—or bins— in the projectile continuum. These tend to increase the cross section without changing the agreement of the ratio with its REB prediction. The applicability of the method is finally explored at high energy for proton-rich nuclei 17F, 25Al and 27P. I show that the ratio method works the latter since this nucleus is bound by a mere 0.870 MeV in the s-wave. For the other nuclei, although the agreement of the ratio with its REB prediction is less good than for neutron-halo nuclei at high energy, it still provides estimates of nuclear-structure features, such as l0 and E0 and could be applied in what can be called an approximate application of the ratio method. Heavy nuclei exhibit a neutron skin, i.e. a thin layer around the nucleus where only neutrons are found. The thickness of the skin is highly correlated with the slope of the symmetry energy. The process of coherent neutral-pion photoproduction is used to extract the nuclear density and hence the neutron-skin thickness of heavy nuclei. In order to analyse recent data on the photoproduction on 12C, 40,48Ca, 116, 120, 124Sn and 208Pb, I build a reaction code. My model uses the formalism of Kerman, McManus and Thaler (KMT) which allows to build the photoproduction matrix on a nucleus from the ones describing the elementary process on a single nucleon. Within the impulse approximation, the photoproduction is seen as the coherent sum of the photoproduction on each of the nucleons. In the plane wave impulse approximation (PWIA), no rescattering of the pion is considered after its production and the cross section is directly proportional to the Fourier transform of the density. Such process is taken into account at the distorted wave impulse approximation (DWIA) by considering a potential simulating the pion-nucleus interaction and built from the KMT formalism.The agreement of my model with the data is good, especially for 208Pb. The distortion has a significant impact on the photoproduction process. The sensitivity of the process to the density of the target is analysed by performing the calculations with several different densities calculated in different structure models. The distortion has the effect of deteriorating this sensitivity. In the particular case of a 208Pb target, the impact of variations of the neutron-skin thickness of around 0.1 fm on the photoproduction cross section is ten times smaller than the size of the error bars on the experimental data. These results, although less dramatic, hold for the tin targets, for which preliminary data exists. In the light of these results, the coherent neutral-pion photoproduction process does not seem to be suited in the study of the neutron-skin thickness. This conclusion goes in contrast to the results of recent measurements on 208Pb, for which the method was shown to be sensitive to fine details of the density. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.0862 seconds