Return to search

Optimisation of the COMET experiment to search for charged lepton flavour violation and a new simulation to study the performance of the EMMA FFAG accelerator

The particle tracking software package, GPT, has been developed and utilised to simulate the beam optics of the EMMA injection line and ring, constructed at the Daresbury Laboratory, UK. EMMA is a proof-of-principle machine for a new type of accelerator: a non-scaling fixed-field alternating gradient (ns-FFAG) accelerator. As such the beam dynamics of the magnetic lattice require benchmarking, with GPT chosen for its space-charge self-field simulation package. Tune and time-of-flight measurements have been successfully simulated and compared to experimental data, recorded during the first few runs of the machine. Measurements confirm the successful operation of EMMA as a ns-FFAG accelerator and simulations highlight that space-charge effects are observable in the EMMA bunch-charge and energy regime. Such accelerators have many applications within and outside particle physics, ranging from cancer therapy and accelerator driven thorium reactors to neutrino factories and muon colliders. The application of FFAGs and the design of the COMET/PRISM experiment, which is seeking to measure muon-to-electron conversion at the 10^−18 level, is investigated. Simulations of the COMET experiment, staged in two phases, have been performed with a focus on optimisation of the stopping target design. A number of geometries have been tested, with a cone then disk structure preferred for Phase-I then Phase-II respectively. Initial data from the COMET precursor experiment, MuSIC, have also been analysed and successfully compared to simulation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:626106
Date January 2013
CreatorsD'Arcy, R. T. P.
PublisherUniversity College London (University of London)
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://discovery.ucl.ac.uk/1387440/

Page generated in 0.0316 seconds