Return to search

Dictionaries for fast and informative dynamic MRI acquisition

Magnetic resonance (MR) imaging is an invaluable tool for medical research and diagnosis but suffers from inefficiencies. The speed of its acquisition mechanism, based on sequentially probing the interactions between nuclear atom spins and a changing magnetic field, is limited by atomic properties and scanner physics. Modern sampling techniques termed compressed sensing have nevertheless demonstrated how near perfect reconstructions are possible from undersampled, accelerated acquisitions, showing promise for more efficient MR acquisition paradigms. At the same time, information extraction from MR images through image analysis implies a considerable dimensionality reduction, in which an image is processed for the extraction of a few clinically useful parameters. This signals an inefficient handling of information in the separated treatment of acquisition and analysis that could be tackled by joining these two essential stages of the imaging pipeline. In this thesis, we explore the use of adaptive sparse modelling for novel acquisition strategies of cardiac cine MR data. Conventional compressed sensing MR acquisition relies on fixed basis transforms for sparse modelling, which are only able to guarantee suboptimal sparse modelling. We introduce spatio-temporal dictionaries that are able to optimally adapt sparse modelling by absorbing salient features of cardiac cine data, and demonstrate how they can outperform sampling methods based on fixed basis transforms. Additionally, we extend the framework introduced to handle parallel data acquisition. Given the flexibility of the formulation, we show how it can be combined with a labelling model that provides a segmentation of the image as a by-product of the reconstruction, hence performing joint reconstruction and analysis.
Date January 2015
CreatorsCaballero, Jose
ContributorsRueckert, Daniel
PublisherImperial College London
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0149 seconds