Return to search

Structural and interaction studies of PSD95 PDZ domain-mediated Kir2.1 clustering mechanisms

PSD95 is the canonical member of the Membrane Associated Guanylate Kinase class of scaffold proteins. PSD95 is a five-domain major scaffolding protein abundant in the postsynaptic density (PSD) of the neuronal excitatory synapse. Within PSD95 three PDZ domains modulate protein-protein interactions by selectively binding to short peptide motifs of target proteins. Under the direction of the multivalent PDZ domain interactions, the interacting proteins tend to cluster at the PSD, a phenomenon that is critical for synaptic signalling regulation. Earlier studies have shown that the N-terminal PDZ domains of PSD95 are obligatory for the clustering to occur. This thesis focuses on the strong inwardly rectifying potassium channel, Kir2.1 as the PSD95 binding partner. Kir2.1 is known to maintain membrane resting potential and control cell excitability. Previous studies have reported that Kir2.1 clustered into ordered tetrad complexes upon association with PSD95.This study investigates the detailed clustering mechanisms of Kir2.1 by PDZ domains. To achieve this, components that are involved in the formation of a complex namely PSD95 sub-domains comprising single PDZ and the tandem N terminal PDZ double domain (PDZ1-2), and Kir2.1 cytoplasmic domains(Kir2.1NC) are studied in detail via different structural and biophysical approaches; 1) PDZ1-2 is examined in apo- and bound ligand form with a Kir2.1 Cterminal peptide in crystal and solution via X-ray crystallography and small angle X-ray scattering; 2) the tandem and the single PDZ domain interaction with ligand are measured thermodynamically via isothermal calorimetry (ITC); 3) the complex of full length PSD95 with Kir2.1NC is analyzed with electron microscopy (EM). The protein components are produced in high quality by protein expression and multiple-step protein purification techniques. PDZ1-2 crystallographic structures were solved at 2.02A and 2.19A in theapo- and the liganded forms respectively. The solution state analysis showed domain separation and structural extension of the tandem domain when incorporated with the ligand. The ITC experiment revealed PDZ1-2 to have greater affinity towards the peptide ligand relative to the single PDZ domains. These combinatorial outcomes lead to the conclusion that PSD95 clusters Kir2.1 by adopting an enhanced binding interaction which is associated with increased PDZ1-2 inter-domain separation. The preliminary analysis of PSD95-Kir2.1NC complex with cryo-EM showed the establishment of a tetrad and led to a reconstruction at 40A resolution. The work in obtaining a higher resolution complex structure is promising with further data collection required to allow the employment of more sophisticated model reconstruction processes.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:713605
Date January 2017
CreatorsRodzli, Nazahiyah
ContributorsPrince, Stephen
PublisherUniversity of Manchester
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://www.research.manchester.ac.uk/portal/en/theses/structural-and-interaction-studies-of-psd95-pdz-domainmediated-kir21-clustering-mechanisms(b07686a7-7a91-4673-bed3-16707f502c61).html

Page generated in 0.0028 seconds