Return to search

First-order distributed optimization methods for machine learning with linear speed-up

This thesis considers the problem of average consensus, distributed centralized and decentralized Stochastic Gradient Descent (SGD) and their communication requirements. Namely, (i) an algorithm for achieving consensus among a collection of agents is studied and its convergence to the average is shown, in the presence of link failures and delays. The new results improve upon the prior works by relaxing some of the restrictive assumptions on communication, such as bounded link failures and intercommunication intervals, as well as allowing for message delays. Next, (ii) a Robust Asynchronous Stochastic Gradient Push (RASGP) algorithm is proposed to minimize the separable objective F(z) = 𝛴_{i=1}^n f_i(z) in a harsh network setting characterized by asynchronous updates, message losses and delays, and directed communication. RASGP is shown to asymptotically perform as well as the best bounds on a centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all local functions f_i(z). Next, (iii) a new communication strategy for Local SGD is proposed, a centralized optimization algorithm where workers make local updates and then calculate their average values only once in a while. It is shown that linear speed-up in the number of workers N is possible, using only O(N) communication (averaging) rounds, independent of the total number of iterations T. Empirical evidence suggests this bound is close to being tight as it is further shown that √N or N^{3/4} communications fail to achieve linear speed-up. Finally, (iv) under mild assumptions, the main of which is twice differentiability on any neighborhood of the optimal solution, one-shot averaging, which only uses a single round of communication, is shown to have optimal convergence rate asymptotically.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/43101
Date27 September 2021
CreatorsSpiridonoff, Artin
ContributorsOlshevsky, Alexander, Paschalidis, Ioannis Ch.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.002 seconds