Return to search

Effects of acetylsalicylic acid on odontogenesis of human dental pulp cells and TGF-ß1 liberation from dentin

Acetylsalicylic acid (ASA), aspirin, is a renowned NSAID that its role in the process of bone metabolism has recently come to light. However, the influence of ASA on the odontogenesis of human dental pulp cells (HDPCs) remains elusive. In search of materials that would synergize the healing potential of the dental pulp, this study aimed to investigate the role of ASA on the odontogenesis of HDPCs in vitro and the influence of ASA on TGF-ß1 liberation from dentin.
HDPCs were cultured in a culture medium with different concentrations of ASA: 25, 50, 75, 100, 200 μg/mL and 0 μg/mL as a control. The mitochondria activity of HDPCs was assessed using an MTT assay. Crystal violet staining and triton were used to evaluate cell proliferation rates. ALP activity was measured with the fluorometric assay. Expressions of DSP and RUNX2 were determined with ELISA. DSP and RUNX2 mRNA levels were measured with RT‐qPCR. Alizarin red staining was conducted to evaluate the mineralized nodule formation. Dentin slices were submerged in PBS (negative control), 17% EDTA (positive control), and ASA before collecting the solution for TGF-ß1quantification by ELISA. The data were analyzed by t tests and ANOVA followed by the Tukey post hoc tests. P values < 0.05 were considered statistically significant.
The results showed that 25-50 μg/mL ASA promoted mitochondria activity of HDPCs at 72h (P<0.05) and yielded significantly higher proliferation rates of HDPCs than the control at 14d and 21d (P<0.001). All concentrations of ASA promoted odontogenic differentiation of HDPCs by enhancing the mineralization and the levels of DSP, RUNX2, and their mRNA expression in a dose-dependent manner (P<0.05). Also, ASA yielded significantly higher TGF-ß1 liberation after conditioning dentin for 5min (P<0.001) and 10min (P<0.05).
In conclusion, the data suggest that ASA promotes the odontogenic potential of HDPCs and TGF-ß1 liberation from dentin in vitro and might be incorporated into the novel pulp capping materials for dental tissue regeneration.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46433
Date10 July 2023
CreatorsKhampatee, Vissuta
ContributorsChou, Laisheng
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0023 seconds