Return to search

The development of manganese oxide electrodes for electrochemical supercapacitors

<p> Cathodic electrodeposition method has been developed for the fabrication of manganese oxide films for application in electrochemical supercapacitors (ES). The manganese oxide films prepared from KMn04 and NaMn04 aqueous solution showed an increasing deposition yield with the deposition time. The deposition rate decreases with increasing the concentration of deposition precursor. The obtained films were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), thermogravimetric and differential thermal analysis (TGA/DTA). The SEM observations revealed uniform films of highly porous nanostructure on different substrates. The capacitive behavior of the deposits was investigated by cyclic voltammetry and chronopotentiometry method in 0.1M NaS04 aqueous solutions. As prepared deposits exhibited pseudocapacitive behavior in the potential window of 0-1.0 V versus SCE with excellent cyclability. A maximum specific capacitance (SC) of 353 Fig was obtained for the 45 μg/cm2 film deposited from KMn04 solution on stainless steel foil, at a scan rate of 2 m V /s in the 0.1 M Na2S04 solution. It was found that the SC decreased with increasing deposit thickness and scan rate. No significant effect was obtained on the films prepared from 20 mM KMn04 on stainless steel after heat treatment at various temperatures. The capacitance of as-prepared electrode did not change by changing the electrolyte from Na2S04 to K2S04 solutions. However, higher capacitance values were observed by using electrolyte with higher concentration. Different structures of manganese oxides were obtained when different deposition precursors were used. No significant difference in capacitive behavior was found between the films prepared from different deposition precursor. However it was concluded that conductivity of the film is key in determining the performance of the electrodes. The effect of substrates on the electrochemical behavior has also been investigated by using stainless steel and nickel foils. </p> / Thesis / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21800
Date January 2007
CreatorsWei, Jianmei
ContributorsZhitomirsky, Igor, Materials Science and Engineering
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish

Page generated in 0.002 seconds