Return to search

Evaluating sex pheromone monitoring as a tool in the integrated management of vine mealybug, Planococcus ficus (signoret) (Homoptera: Pseudococcidae) / M.J. Kotze

The vine mealybug, Planococcus ficus (Signoret) (Homoptera: Pseudococcidae) is a pest with significant economic impact on the grape growing industry in South Africa and other parts of the world. With the isolation and synthesizing of the vine mealybug sex pheromone in 2001, new control options for the integrated management of the vine mealybug have been created.

The status of sex pheromone monitoring as a tool in the integrated management of the vine mealybug has been evaluated from different perspectives. A significant quantitative difference in male vine mealybug trap catch numbers has been observed between wine and table grape vineyards and results indicated that there were differences in the susceptibility of
grape cultivars to vine mealybug. Currently, the delta trap design is the accepted trap design for vine mealybug monitoring. No studies have yet been conducted to determine the optimum trap parameters like size or design. Population pressure may have an influence on the qualitative efficiency of various trap designs.

The basis for degree-day forecasting models has been established adequately. However, refinements need to be done and the incorporation of factors such as humidity and regionality also need to be considered. Daily maximum temperatures fluctuating around the upper developmental threshold temperature for prolonged periods of time seemed to suppress population numbers. Different vineyard management practices exist for wine and table grape production. While an action threshold of 65 vine mealybug males per trap per
two-week period seems an acceptable threshold for table grape production, it may not be appropriate for wine grape (or raisin grape) production.

Using sex pheromone traps for population monitoring is a valid technique in the arsenal of management tactics against the vine mealybug. However, refinements and validation of research results must be done further to build credibility into the monitoring system. / Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2006.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/1203
Date January 2006
CreatorsKotze, Maria Johanna
PublisherNorth-West University
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.003 seconds