Return to search

Application of Baylis-Hillman methodology in the synthesis of HIV-1 enzyme inhibitors

The application of Baylis-Hillman methodology has afforded access to a range of β-hydroxypropionate ester-AZT conjugates as potential dual-action HIV-1 IN/RT inhibitors. Two families comprising a total of nine β-hydroxypropionate ester-AZT conjugates were synthesised. The first family was accessed using O-benzylated salicylaldehydes and methyl acrylate and the second from unprotected salicylaldehydes using tert-butyl acrylate as the activated alkene. Spectroscopic methods were employed to fully characterize the compounds. Propargylation of the respective Baylis-Hillman adducts was achieved via conjugate addition of propargylamine. The resulting products were then employed in Cu(I)-catalysed “click” reactions with azidothymidine (AZT) to yield the desired β-hydroxypropionate ester-AZT conjugates. Exploratory studies were also conducted to access 4-hydroxycoumarins from Baylis-Hillman derived adducts and to construct customized chiral Baylis-Hillman reaction sites. Many 4- hydroxycoumarins are known to exhibit a wide range of biological activities, and extending Baylis-Hillman methodology to access these systems is an important challenge. Two approaches were investigated. The first involved the formation of a 4-phthalimidocoumarin, aromatisation and hydrolysis of which was expected to lead to the 4-hydroxycoumarin target. The second, a variation of the first, involved the use of 4-(chrolomethyl)coumarin intermediates. Unfortunately, while various intermediates were prepared and characterised, neither approach led ultimately to the desired targets. N-substituted borneol-10-sulfonamides were constructed from camphor-10- sulfonyl chloride as chiral Baylis-Hillman reaction sites. In a preliminary study, however, none of the N-substituted borneol-10-sulfonamides exhibited Baylis-Hillman catalytic activity.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4540
Date January 2015
CreatorsManyeruke, Meloddy Hlatini
PublisherRhodes University, Faculty of Science, Chemistry
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format110 p, pdf
RightsManyeruke, Meloddy Hlatini

Page generated in 0.0022 seconds