Return to search

The synthesis of 1-butene oligomers with vinyl endgroups and their use in further reactions

Thesis (MSc (Chemistry and Polymer Science))--University of Stellenbosch, 2007. / This study comprises the synthesis, functionalization, and characterization of 1-butene
oligomers, as well as the synthesis of oligobutene-based macro-RAFT agent.
The directed oligomerization of 1-butene was carried out with a Cp2ZrCl2 as a catalyst,
activated with MAO as a co-catalyst (10% in toluene), in the ratio Al/Zr =1000/1.
Oligomers possessing vinylidene double bonds, with low molecular weight (Mw), ranging
between 800 and 2000 g.mol-1 as confirmed by gel permeation chromatography, were
obtained. The oligomers were successfully functionalized by adding hydroxyl
functionality to the vinylidene double bond using oxymercuration-demercuration
reaction, and as a result hydroxy-terminated oligobutenes were obtained.
Characterization techniques such as 1H NMR, 13C NMR, GC-MS and FTIR confirmed
the successful synthesis and functionalization of 1-butene oligomers.
The hydroxy-terminated oligobutenes were used to prepare an oligobutene-based
macro-RAFT agent. The synthesis of the macro-RAFT agent was carried out with an
esterification reaction between the hydroxy-terminated oligobutenes and an acid
functionalized RAFT agent. The successful synthesis of the macro-RAFT agent was
confirmed by 1H NMR, 13C NMR, FTIR, and UV spectroscopy. The chain transfer ability
of the macro-RAFT agent to induce living characteristics in free radical styrene
polymerization was investigated with respect to molecular weight control and kinetic
behaviour. The macro-RAFT agent was identified as suitable RAFT agent, yielding
polystyrene-b-oligobutnes with low polydispersities and molecular weight ranging from
3000 to 40000 g/mol.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:sun/oai:scholar.sun.ac.za:10019.1/2517
Date03 1900
CreatorsAl-Aeeb, Ahmed
ContributorsVan Reenen, A. J., University of Stellenbosch. Faculty of Science. Dept. of Chemistry and Polymer Science.
PublisherStellenbosch : University of Stellenbosch
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format1524269 bytes, application/pdf
RightsUniversity of Stellenbosch

Page generated in 0.0026 seconds