Return to search

Intrinsic factors, performance and dynamic kinematics in optimisation of cycling biomechanics

Kinematic measurements conducted during bike set-ups utilise either static or dynamic measures. There is currently limited data on reliability of static and dynamic measures nor consensus on which is the optimal method. The aim of the study was to assess the difference between static and dynamic measures of the ankle, knee, hip, shoulder and elbow. Nineteen subjects performed three separate trials of a 10min duration at a fixed workload (70% of peak power output). Static measures were taken with a standard goniometer (GM), an inclinometer (IM) and dynamic three dimensional motion capture (3DMC) using an eight camera motion capture system. Static and dynamic joint angles were compared over the three trials to assess repeatability of the measurements and differences between static and dynamic values. There was a positive correlation between GM and IM measures for all joints. Only the knee, shoulder and elbow were positively correlated between GM and 3DMC, and IM and 3DMC. Although all three instruments were reliable, 3D motion analysis utilised different landmarks for most joints and produced different means. Changes in knee flexion angle from static to dynamic are attributable to changes in the positioning of the foot. Controlling for this factor, the differences are negated. It was demonstrated that 3DMC is not interchangeable with GM and IM, and it is recommended that 3DMC develop independent reference values for bicycle configuration.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/31052
Date12 February 2020
CreatorsHolliday, Wendy
ContributorsSwart, Jeroen, Fisher, Julia
PublisherFaculty of Health Sciences, Department of Human Biology
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral Thesis, Doctoral, PhD
Formatapplication/pdf

Page generated in 0.0023 seconds