Return to search

Charakterizace mechanismů jaderného transportu proteinu 53BP1 / Characterisation of the mechanisms regulating 53BP1 nuclear transport

Tumor suppressor p53-binding protein 1 (53BP1) is an integral part of a sophisticated network of cellular pathways termed as the DNA damage response (DDR). These pathways are specialized in the maintenance of genome integrity. Recently, it was reported that nuclear import of 53BP1 depends on importin ß. Here, I used fluorescence microscopy and co-immunoprecipitation experiments to identify its nuclear localization signal (NLS). Clusters of basic amino acids 1667-KRK-1669 and 1681-KRGRK- 1685 were required for 53BP1 interaction with importin ß and for its nuclear localization. Short peptide containing these two clusters was sufficient for interaction with importin ß and targeting EGFP to the nucleus. Additionally, the effect of 53BP1 phosphorylation at S1678 on its nuclear import was examined. Mimicking the phosphorylation in the 53BP1-S1678D mutant decreased the binding to importin ß and resulted in a mild defect in 53BP1 nuclear import. However, 53BP1 entered the nucleus continuously during the cell cycle, suggesting that CDK-dependent phosphorylation of S1678 probably does not significantly contribute to the regulation of 53BP1 nuclear transport. Taken together, 53BP1 NLS meets the attributes of a classical bipartite NLS. Although no cell cycle-dependent regulation of its import was observed, the...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:343047
Date January 2016
CreatorsLiďák, Tomáš
ContributorsMacůrek, Libor, Brábek, Jan
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.002 seconds