Return to search

Design of a 125 mhz tunable continuous-time bandpass modulator for wireless IF applications

Bandpass sigma-delta modulators combine oversampling and noise shaping to get
very high resolution in a limited bandwidth. They are widely used in applications that
require narrowband high-resolution conversion at high frequencies. In recent years interests
have been seen in wireless system and software radio using sigma-delta modulators to
digitize signals near the front end of radio receivers. Such applications necessitate clocking
the modulators at a high frequency (MHz or above). Therefore a loop filter is required in
continuous-time circuits (e.g., using transconductors and integrators) rather than discretetime
circuits (e.g., using switched capacitors) where the maximum clocking rate is limited
by the bandwidth of Opamp, switch’s speed and settling-time of the circuitry.
In this work, the design of a CMOS fourth-order bandpass sigma-delta modulator clocking
at 500 MHz for direct conversion of narrowband signals at 125 MHz is presented. A new
calibration scheme is proposed for the best signal-to-noise-distortion-ratio (SNDR) of the
modulator. The continuous-time loop filter is based on Gm-C resonators. A novel
transconductance amplifier has been developed with high linearity at high frequency. Qfactor
of filter is enhanced by tunable negative impedance which cancels the finite output
impendence of OTA. The fourth-order modulator is implemented using 0.35 mm triplemetal
standard analog CMOS technology. Postlayout simulation in CADENCE
demonstrates that the modulator achieves a SNDR of 50 dB (~8 bit) performance over a 1
MHz bandwidth. The modulator’s power consumption is 302 mW from supply power of ±
1.65V.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/3257
Date12 April 2006
CreatorsLiu, Xuemei
ContributorsSilva-Martinez, Jose
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Format3633544 bytes, electronic, application/pdf, born digital

Page generated in 0.0016 seconds