Return to search

Layout optimization in ultra deep submicron VLSI design

As fabrication technology keeps advancing, many deep submicron (DSM) effects have become
increasingly evident and can no longer be ignored in Very Large Scale Integration
(VLSI) design. In this dissertation, we study several deep submicron problems (eg. coupling
capacitance, antenna effect and delay variation) and propose optimization techniques
to mitigate these DSM effects in the place-and-route stage of VLSI physical design.
The place-and-route stage of physical design can be further divided into several steps:
(1) Placement, (2) Global routing, (3) Layer assignment, (4) Track assignment, and (5) Detailed
routing. Among them, layer/track assignment assigns major trunks of wire segments
to specific layers/tracks in order to guide the underlying detailed router. In this dissertation,
we have proposed techniques to handle coupling capacitance at the layer/track assignment
stage, antenna effect at the layer assignment, and delay variation at the ECO (Engineering
Change Order) placement stage, respectively. More specifically, at layer assignment, we
have proposed an improved probabilistic model to quickly estimate the amount of coupling
capacitance for timing optimization. Antenna effects are also handled at layer assignment
through a linear-time tree partitioning algorithm. At the track assignment stage, timing is
further optimized using a graph based technique. In addition, we have proposed a novel
gate splitting methodology to reduce delay variation in the ECO placement considering
spatial correlations. Experimental results on benchmark circuits showed the effectiveness
of our approaches.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/3759
Date16 August 2006
CreatorsWu, Di
ContributorsHu, Jiang, Mahapatra, Rabi N.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Format591431 bytes, electronic, application/pdf, born digital

Page generated in 0.002 seconds