Spelling suggestions: "subject:"2physical design"" "subject:"2physical 1design""
1 |
Algorithms for the scaling toward nanometer VLSI physical synthesisSze, Chin Ngai 25 April 2007 (has links)
Along the history of Very Large Scale Integration (VLSI), we have successfully scaled
down the size of transistors, scaled up the speed of integrated circuits (IC) and the number
of transistors in a chip - these are just a few examples of our achievement in VLSI scaling.
It is projected to enter the nanometer (timing estimation and buffer planning for global routing and other early stages such
as floorplanning. A novel path based buffer insertion scheme is also included, which
can overcome the weakness of the net based approaches. Part-2 Circuit clustering techniques with the application in Field-Programmable
Gate Array (FPGA) technology mapping
The problem of timing driven n-way circuit partitioning with application to FPGA
technology mapping is studied and a hierarchical clustering approach is presented for the latest multi-level FPGA architectures. Moreover, a more general delay model is included in order to accurately characterize the delay behavior of the clusters and circuit elements.
|
2 |
Algorithmic techniques for nanometer VLSI design and manufacturing closureHu, Shiyan 10 October 2008 (has links)
As Very Large Scale Integration (VLSI) technology moves to the nanoscale
regime, design and manufacturing closure becomes very difficult to achieve due to
increasing chip and power density. Imperfections due to process, voltage and temperature variations aggravate the problem. Uncertainty in electrical characteristic of
individual device and wire may cause significant performance deviations or even functional failures. These impose tremendous challenges to the continuation of Moore's
law as well as the growth of semiconductor industry.
Efforts are needed in both deterministic design stage and variation-aware design
stage. This research proposes various innovative algorithms to address both stages for
obtaining a design with high frequency, low power and high robustness. For deterministic optimizations, new buffer insertion and gate sizing techniques are proposed. For
variation-aware optimizations, new lithography-driven and post-silicon tuning-driven
design techniques are proposed.
For buffer insertion, a new slew buffering formulation is presented and is proved
to be NP-hard. Despite this, a highly efficient algorithm which runs > 90x faster
than the best alternatives is proposed. The algorithm is also extended to handle
continuous buffer locations and blockages.
For gate sizing, a new algorithm is proposed to handle discrete gate library in
contrast to unrealistic continuous gate library assumed by most existing algorithms. Our approach is a continuous solution guided dynamic programming approach, which
integrates the high solution quality of dynamic programming with the short runtime
of rounding continuous solution.
For lithography-driven optimization, the problem of cell placement considering
manufacturability is studied. Three algorithms are proposed to handle cell flipping
and relocation. They are based on dynamic programming and graph theoretic approaches, and can provide different tradeoff between variation reduction and wire-
length increase.
For post-silicon tuning-driven optimization, the problem of unified adaptivity
optimization on logical and clock signal tuning is studied, which enables us to significantly save resources. The new algorithm is based on a novel linear programming
formulation which is solved by an advanced robust linear programming technique.
The continuous solution is then discretized using binary search accelerated dynamic
programming, batch based optimization, and Latin Hypercube sampling based fast
simulation.
|
3 |
Performance and power optimization in VLSI physical designJiang, Zhanyuan 15 May 2009 (has links)
As VLSI technology enters the nanoscale regime, a great amount of efforts have
been made to reduce interconnect delay. Among them, buffer insertion stands out
as an effective technique for timing optimization. A dramatic rise in on-chip buffer
density has been witnessed. For example, in two recent IBM ASIC designs, 25% gates
are buffers.
In this thesis, three buffer insertion algorithms are presented for the procedure
of performance and power optimization. The second chapter focuses on improving circuit performance under inductance effect. The new algorithm works under
the dynamic programming framework and runs in provably linear time for multiple
buffer types due to two novel techniques: restrictive cost bucketing and efficient delay
update. The experimental results demonstrate that our linear time algorithm consistently outperforms all known RLC buffering algorithms in terms of both solution
quality and runtime. That is, the new algorithm uses fewer buffers, runs in shorter
time and the buffered tree has better timing.
The third chapter presents a method to guarantee a high fidelity signal transmission in global bus. It proposes a new redundant via insertion technique to reduce
via variation and signal distortion in twisted differential line. In addition, a new
buffer insertion technique is proposed to synchronize the transmitted signals, thus
further improving the effectiveness of the twisted differential line. Experimental results demonstrate a 6GHz signal can be transmitted with high fidelity using the new
approaches. In contrast, only a 100MHz signal can be reliably transmitted using a
single-end bus with power/ground shielding. Compared to conventional twisted differential line structure, our new techniques can reduce the magnitude of noise by 45%
as witnessed in our simulation.
The fourth chapter proposes a buffer insertion and gate sizing algorithm for
million plus gates. The algorithm takes a combinational circuit as input instead of
individual nets and greatly reduces the buffer and gate cost of the entire circuit.
The algorithm has two main features: 1) A circuit partition technique based on the
criticality of the primary inputs, which provides the scalability for the algorithm, and
2) A linear programming formulation of non-linear delay versus cost tradeoff, which
formulates the simultaneous buffer insertion and gate sizing into linear programming
problem. Experimental results on ISCAS85 circuits show that even without the circuit
partition technique, the new algorithm achieves 17X speedup compared with path
based algorithm. In the meantime, the new algorithm saves 16.0% buffer cost, 4.9%
gate cost, 5.8% total cost and results in less circuit delay.
|
4 |
Performance and power optimization in VLSI physical designJiang, Zhanyuan 10 October 2008 (has links)
As VLSI technology enters the nanoscale regime, a great amount of efforts have
been made to reduce interconnect delay. Among them, buffer insertion stands out
as an effective technique for timing optimization. A dramatic rise in on-chip buffer
density has been witnessed. For example, in two recent IBM ASIC designs, 25% gates
are buffers.
In this thesis, three buffer insertion algorithms are presented for the procedure
of performance and power optimization. The second chapter focuses on improving circuit performance under inductance effect. The new algorithm works under
the dynamic programming framework and runs in provably linear time for multiple
buffer types due to two novel techniques: restrictive cost bucketing and efficient delay
update. The experimental results demonstrate that our linear time algorithm consistently outperforms all known RLC buffering algorithms in terms of both solution
quality and runtime. That is, the new algorithm uses fewer buffers, runs in shorter
time and the buffered tree has better timing.
The third chapter presents a method to guarantee a high fidelity signal transmission in global bus. It proposes a new redundant via insertion technique to reduce
via variation and signal distortion in twisted differential line. In addition, a new
buffer insertion technique is proposed to synchronize the transmitted signals, thus
further improving the effectiveness of the twisted differential line. Experimental results demonstrate a 6GHz signal can be transmitted with high fidelity using the new
approaches. In contrast, only a 100MHz signal can be reliably transmitted using a
single-end bus with power/ground shielding. Compared to conventional twisted differential line structure, our new techniques can reduce the magnitude of noise by 45%
as witnessed in our simulation.
The fourth chapter proposes a buffer insertion and gate sizing algorithm for
million plus gates. The algorithm takes a combinational circuit as input instead of
individual nets and greatly reduces the buffer and gate cost of the entire circuit.
The algorithm has two main features: 1) A circuit partition technique based on the
criticality of the primary inputs, which provides the scalability for the algorithm, and
2) A linear programming formulation of non-linear delay versus cost tradeoff, which
formulates the simultaneous buffer insertion and gate sizing into linear programming
problem. Experimental results on ISCAS85 circuits show that even without the circuit
partition technique, the new algorithm achieves 17X speedup compared with path
based algorithm. In the meantime, the new algorithm saves 16.0% buffer cost, 4.9%
gate cost, 5.8% total cost and results in less circuit delay.
|
5 |
Modeling of integrated circuit interconnect dielectric reliability based on the physical design characteristicsHong, Changsoo 28 August 2006 (has links)
The objective of the research is to model the reliability and breakdown mechanism of back-end dielectrics in integrated circuits and to investigate the impact of physical design characteristics on the back-end dielectric reliability. As design and process complexities continue to increase, the reliability of the back-end dielectrics becomes marginal. This is mainly because the power supply voltage is not scaled at a rate comparable to feature size, which results in exponentially increasing electric fields among interconnect lines. Therefore, it is strongly desirable to be able to predict reliability or to detect design weaknesses to reliability failure during the pre-silicon verification stage.
It is desirable to enable pre-silicon verification of back-end dielectric reliability based on physical design characteristics. In this research, it is shown that dielectric reliability can be modeled as a function of the critical circuit area based on the yield models. Defect clustering is taken into account by using the negative binomial statistics. The physical design characteristics will be investigated for their impact on back-end dielectric reliability.
These characteristics include such factors as layout geometry, pattern density, pattern orientation, and via placement. The physical breakdown mechanism for porous back-end dielectric films is also to be investigated using Monte Carlo simulation. It is shown that the electric field is enhanced by porosity in ultra-low-k dielectric films. The electric field enhancement caused by the porosity is shown to accelerate the charge transport.
|
6 |
Fast interconnect optimizationLi, Zhuo 12 April 2006 (has links)
As the continuous trend of Very Large Scale Integration (VLSI) circuits technology
scaling and frequency increases, delay optimization techniques for interconnect
are increasingly important for achieving timing closure of high performance designs.
For the gigahertz microprocessor and multi-million gate ASIC designs it is crucial to
have fast algorithms in the design automation tools for many classical problems in
the field to shorten time to market of the VLSI chip. This research presents algorithmic
techniques and constructive models for two such problems: (1) Fast buffer
insertion for delay optimization, (2) Wire sizing for delay optimization and variation
minimization on non-tree networks.
For the buffer insertion problem, this dissertation proposes several innovative
speedup techniques for different problem formulations and the realistic requirement.
For the basic buffer insertion problem, an O(n log2 n) optimal algorithm that runs
much faster than the previous classical van GinnekenÂs O(n2) algorithm is proposed,
where n is the number of buffer positions. For modern design libraries that contain
hundreds of buffers, this research also proposes an optimal algorithm in O(bn2) time
for b buffer types, a significant improvement over the previous O(b2n2) algorithm
by Lillis, Cheng and Lin. For nets with small numbers of sinks and large numbers
of buffer positions, a simple O(mn) optimal algorithm is proposed, where m is the
number of sinks. For the buffer insertion with minimum cost problem, the problem is first proved to be NP-complete. Then several optimal and approximation techniques
are proposed to further speed up the buffer insertion algorithm with resource control
for big industrial designs.
For the wire sizing problem, we propose a systematic method to size the wires of
general non-tree RC networks. The new method can be used for delay optimization
and variation reduction.
|
7 |
Lithography aware physical design and layout optimization for manufacturabilityGao, Jhih-Rong 25 June 2014 (has links)
As technology continues to scale down, semiconductor manufacturing with 193nm lithography is greatly challenging because the required half pitch size is beyond the resolution limit. In order to bridge the gap between design requirements and manufacturing limitations, various resolution enhancement techniques have been proposed to avoid potentially problematic patterns and to improve product yield. In addition, co-optimization between design performance and manufacturability can further provide flexible and significant yield improvement, and it has become necessary for advanced technology nodes. This dissertation presents the methodologies to consider the lithography impact in different design stages to improve layout manufacturability. Double Patterning Lithography (DPL) has been a promising solution for sub-22nm node volume production. Among DPL techniques, self-aligned double patterning (SADP) provides good overlay controllability when two masks are not aligned perfectly. However, SADP process places several limitations on design flexibility and still exists many challenges in physical design stages. Starting from the early design stage, we analyze the standard cell designs and construct a set of SADP-aware cell placement candidates, and show that placement legalization based on this SADP awareness information can effectively resolve DPL conflicts. In the detailed routing stage, we propose a new routing cost formulation based on SADP-compliant routing guidelines, and achieve routing and layout decomposition simultaneously. In the case that limited routing perturbation is allowed, we propose a post-routing flow based on lithography simulation and lithography-aware design rules. Both routing methods, one in detailed routing stage and one in post routing stage, reduce DPL conflicts/violations significantly with negligible wire length impact. In the layout decomposition stage, layout modification is restricted and thus the manufacturability is even harder to guaranteed. By taking the advantage of complementary lithography, we present a new layout decomposition approach with e-beam cutting, which optimizes SADP overlay error and e-beam lithography throughput simultaneously. After the mask layout is defined, optical proximity correction (OPC) is one of the resolution enhancement techniques that is commonly required to compensate the image distortion from the lithography process. We propose an inverse lithography technique to solve the OPC problem considering design target and process window co-optimization. Our mask optimization is pixel based and thus can enable better contour fidelity. In the final physical verification stage, a complex and time-consuming lithography simulation needs to be performed to identify faulty patterns. We provide a classification method based on support vector machine and principle component analysis that detects lithographic hotspots efficiently and accurately. / text
|
8 |
Electromigration modeling and layout optimization for advanced VLSIPak, Jiwoo 04 September 2015 (has links)
Electromigration (EM) is a critical problem for interconnect reliability in advanced VLSI design. Because EM is a strong function of current density, a smaller cross-sectional area of interconnects can degrade the EM-related lifetime of IC, which is expected to become more severe in future technology nodes. Moreover, as EM is governed by various factors such as temperature, material property, geometrical shape, and mechanical stress, different interconnect structures can have distinct EM issues and solutions to mitigate them. For example, one of the most prominent technologies, die stacking technology of three-dimensional (3D) ICs, can have different EM problems from that of planer ICs, due to their unique interconnects such as through-silicon vias (TSVs).
This dissertation investigates EM in various interconnect structures, and applies the EM models to optimize IC layout. First, modeling of EM is developed for chip-level interconnects, such as wires, local vias, TSVs, and multi-scale vias (MSVs). Based on the models, fast and accurate EM-prediction methods are proposed for the chip-level designs. After that, by utilizing the EM-prediction methods, the layout optimization methods are suggested, such as EM-aware routing for 3D ICs and EM-aware redundant via insertion for the future technology nodes in VLSI.
Experimental results show that the proposed EM modeling approaches enable fast and accurate EM evaluation for chip design, and the EM-aware layout optimization methods improve EM-robustness of advanced VLSI designs. / text
|
9 |
Layout optimization in ultra deep submicron VLSI designWu, Di 16 August 2006 (has links)
As fabrication technology keeps advancing, many deep submicron (DSM) effects have become
increasingly evident and can no longer be ignored in Very Large Scale Integration
(VLSI) design. In this dissertation, we study several deep submicron problems (eg. coupling
capacitance, antenna effect and delay variation) and propose optimization techniques
to mitigate these DSM effects in the place-and-route stage of VLSI physical design.
The place-and-route stage of physical design can be further divided into several steps:
(1) Placement, (2) Global routing, (3) Layer assignment, (4) Track assignment, and (5) Detailed
routing. Among them, layer/track assignment assigns major trunks of wire segments
to specific layers/tracks in order to guide the underlying detailed router. In this dissertation,
we have proposed techniques to handle coupling capacitance at the layer/track assignment
stage, antenna effect at the layer assignment, and delay variation at the ECO (Engineering
Change Order) placement stage, respectively. More specifically, at layer assignment, we
have proposed an improved probabilistic model to quickly estimate the amount of coupling
capacitance for timing optimization. Antenna effects are also handled at layer assignment
through a linear-time tree partitioning algorithm. At the track assignment stage, timing is
further optimized using a graph based technique. In addition, we have proposed a novel
gate splitting methodology to reduce delay variation in the ECO placement considering
spatial correlations. Experimental results on benchmark circuits showed the effectiveness
of our approaches.
|
10 |
Physical design methodologies for monolithic 3D ICsPanth, Shreepad Amar 08 June 2015 (has links)
The objective of this research is to develop physical design methodologies for monolithic 3D ICs and use them to evaluate the improvements in the power-performance envelope offered over 2D ICs. In addition, design-for-test (DfT) techniques essential for the adoption of shorter term through-silicon-via (TSV) based 3D ICs are explored.
Testing of TSV-based 3D ICs is one of the last challenges facing their commercialization. First, a pre-bond testable 3D scan chain construction technique is developed. Next, a transition-delay-fault test architecture is presented, along with a study on how to mitigate IR-drop. Finally, to facilitate partitioning, a quick and accurate framework for test-TSV estimation is developed.
Block-level monolithic 3D ICs will be the first to emerge, as significant IP can be reused. However, no physical design flows exist, and hence a monolithic 3D floorplanning framework is developed. Next, inter-tier performance differences that arise due to the not yet mature fabrication process are investigated and modeled. Finally, an inter-tier performance-difference aware floorplanner is presented, and it is demonstrated that high quality 3D floorplans are achievable even under these inter-tier differences.
Monolithic 3D offers sufficient integration density to place individual gates in three dimensions and connect them together. However, no tools or techniques exist that can take advantage of the high integration density offered. Therefore, a gate-level framework that leverages existing 2D ICs tools is presented. This framework also provides congestion modeling and produces results that minimize routing congestion. Next, this framework is extended to commercial 2D IC tools, so that steps such as timing optimization and clock tree synthesis can be applied. Finally, a voltage-drop-aware partitioning technique is presented that can alleviate IR-drop issues, without any impact on the performance or maximum operating temperature of the chip.
|
Page generated in 0.0836 seconds