Return to search

Algorithmic techniques for nanometer VLSI design and manufacturing closure

As Very Large Scale Integration (VLSI) technology moves to the nanoscale
regime, design and manufacturing closure becomes very difficult to achieve due to
increasing chip and power density. Imperfections due to process, voltage and temperature variations aggravate the problem. Uncertainty in electrical characteristic of
individual device and wire may cause significant performance deviations or even functional failures. These impose tremendous challenges to the continuation of Moore's
law as well as the growth of semiconductor industry.
Efforts are needed in both deterministic design stage and variation-aware design
stage. This research proposes various innovative algorithms to address both stages for
obtaining a design with high frequency, low power and high robustness. For deterministic optimizations, new buffer insertion and gate sizing techniques are proposed. For
variation-aware optimizations, new lithography-driven and post-silicon tuning-driven
design techniques are proposed.
For buffer insertion, a new slew buffering formulation is presented and is proved
to be NP-hard. Despite this, a highly efficient algorithm which runs > 90x faster
than the best alternatives is proposed. The algorithm is also extended to handle
continuous buffer locations and blockages.
For gate sizing, a new algorithm is proposed to handle discrete gate library in
contrast to unrealistic continuous gate library assumed by most existing algorithms. Our approach is a continuous solution guided dynamic programming approach, which
integrates the high solution quality of dynamic programming with the short runtime
of rounding continuous solution.
For lithography-driven optimization, the problem of cell placement considering
manufacturability is studied. Three algorithms are proposed to handle cell flipping
and relocation. They are based on dynamic programming and graph theoretic approaches, and can provide different tradeoff between variation reduction and wire-
length increase.
For post-silicon tuning-driven optimization, the problem of unified adaptivity
optimization on logical and clock signal tuning is studied, which enables us to significantly save resources. The new algorithm is based on a novel linear programming
formulation which is solved by an advanced robust linear programming technique.
The continuous solution is then discretized using binary search accelerated dynamic
programming, batch based optimization, and Latin Hypercube sampling based fast
simulation.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/85905
Date10 October 2008
CreatorsHu, Shiyan
ContributorsHu, Jiang
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, born digital

Page generated in 0.0018 seconds