• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 13
  • 3
  • 3
  • Tagged with
  • 51
  • 51
  • 15
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Physical Design Automation for System-on-Packages and 3D-Integrated Circuits

Minz, Jacob Rajkumar 03 August 2006 (has links)
The focus of this research was to develop interconnect-centric physical design tools for 3D technologies. A new routing model for the SOP structure was developed which incorporated the 3D structure and formalized the resource structure that facilitated the development of the global routing tool. The challenge of this work was to intelligently convert the 3D SOP routing problem into a set of 2D problems which could be solved efficiently. On the lines of MCM, the global routing problem was divided into a number of phases namely, coarse pin distribution, net distribution, detailed pin distribution, topology generation, layer assignment, channel assignment and local routing. The novelty in this paradigm is due to the feed-through vias needed by the nets which traverse through multiple placement layers. To gain further improvements in performance, optical routing was proposed and a cost analysis study was done. The areas for the placement of waveguides were efficiently determined, which reduced delays and maximized utilization. The global router developed was integrated into a simulated-annealing based floorplanner to investigate trade-offs of various objectives. Since power-supply noise suppression is of paramount importance in SOP, a model was developed for the SOP power-supply network. Decap allocation, and insertion were also integrated into the framework. The challenges in this work were to integrate computationally intensive analysis tools with a floorplanning that works to its best efficency provided the evaluation of the cost functions are rapid. Trajectory-based approaches were used to sample representative data points for congestion analysis and interpolate the the congestion metric during the optimization schedule. Efficient algorithms were also proposed for 3D clock routing, which acheived equal skews under uniform and worst thermal profiles. Other objectives such as wirelength, through-vias, and power were also handled.
22

Genetic algorithm based two-dimensional and three-dimensional floorplanning for VLSI ASICs

Fernando, Pradeep R. 01 January 2006 (has links)
Dramatic improvements in circuit integration technologies have resulted in a huge increase in the complexity of circuits that can be fabricated on a single integrated circuit(IC). The significance of the performance and reliability issues of interconnects has increased greatly demanding radically different solutions such a Three-Dimensional ICs are an elegant solution to the interconnect and device density issues in the current and future technology generations as they provide an additional dimension for packing the devices. This results in a direct reduction in the chip package area and the total wiring required to complete all the interconnections. More importantly, the number and the length of long, global wires are reduced significantlydue to the availability of the third dimension for routing purposes. But to fully exploit all the advantages associated with three-dimensional ICs, a good three-dim ensional packing of devices is needed. This greatly increases the importance of Floorplanning and Placement stages ofthe VLSI Physical Design process. There have been many initial attempts to develop a physical design framework for three-dimensional ICs but only a few of them focus on physical design for three-dimensional macro-cell based circuit designs. This work develops a novel genetic algorithm for performing both two-dimensional and three-dimensional macro-cell floorplanning. The genetic floorplanner employs two novel crossover operators. The first crossover operator (MTOX) is an unbiased stochastic search operator, while the second crossover operator (HOOX) is a heuristic operator that searches for floorplans with good area usage. Both the crossover operators can be applied transparently for both 2D and 3D floorplanning.Three mutation operators have been developed to work with the chosen floorplan representation scheme, namely Sequence Pairs. Despite the use of a comparatively s mall population size of 200, the genetic floorplanner achieves reduction in footprint area and wirelength for both 2D and 3D floorplanning as compared to some of the recent works in the literature. For 2D floorplanning, the genetic floorplanner achieves a 12 percent average reduction in total wirelength as compared to a Quadratic Programming based Floorplanner for a small 2 percent increase in area. For 3D floorplanning,the proposed floorplanner achieves a 11 percent average reduction in total wirelength and a 5 percent decrease in footprint area as compared to a Simulated Annealing based 3D floorplanner.
23

Interconnects for future technology generations - conventional CMOS with copper/low-k and beyond

Ceyhan, Ahmet 12 January 2015 (has links)
The limitations of the conventional Cu/low-k interconnect technology for use in future ultra-scaled integrated circuits down to 7 nm in the year 2020 are investigated from the power/performance point of view. Compact models are used to demonstrate the impacts of various interconnect process parameters, for instance, the interconnect barrier/liner bilayer thickness and aspect ratio, on the design and optimization of a multilevel interconnect network. A framework to perform a sensitivity analysis for the circuit behavior to interconnect process parameters is created for future FinFET CMOS technology nodes. Multiple predictive cell libraries down to the 7‒nm technology node are constructed to enable early investigation of the electronic chip performance using commercial electronic design automation (EDA) tools with real chip information. Findings indicated new opportunities that arise for emerging novel interconnect technologies from the materials and process perspectives. These opportunities are evaluated based on potential benefits that are quantified with rigorous circuit-level simulations and requirements for key parameters are underlined. The impacts of various emerging interconnect technologies on the performances of emerging devices are analyzed to quantify the realistic circuit- and system-level benefits that these new switches can offer.
24

Lexicographic path searches for FPGA routing

So, Keith Kam-Ho, Computer Science & Engineering, Faculty of Engineering, UNSW January 2008 (has links)
This dissertation reports on studies of the application of lexicographic graph searches to solve problems in FPGA detailed routing. Our contributions include the derivation of iteration limits for scalar implementations of negotiation congestion for standard floating point types and the identification of pathological cases for path choice. In the study of the routability-driven detailed FPGA routing problem, we show universal detailed routability is NP-complete based on a related proof by Lee and Wong. We describe the design of a lexicographic composition operator of totally-ordered monoids as path cost metrics and show its optimality under an adapted A* search. Our new router, CornNC, based on lexicographic composition of congestion and wirelength, established a new minimum track count for the FPGA Place and Route Challenge. For the problem of long-path timing-driven FPGA detailed routing, we show that long-path budgeted detailed routability is NP-complete by reduction to universal detailed routability. We generalise the lexicographic composition to any finite length and verify its optimality under A* search. The application of the timing budget solution of Ghiasi et al. is used to solve the long-path timing budget problem for FPGA connections. Our delay-clamped spiral lexicographic composition design, SpiralRoute, ensures connection based budgets are always met, thus achieves timing closure when it successfully routes. For 113 test routing instances derived from standard benchmarks, SpiralRoute found 13 routable instances with timing closure that were unroutable by a scalar negotiated congestion router and achieved timing closure in another 27 cases when the scalar router did not, at the expense of increased runtime. We also study techniques to improve SpiralRoute runtimes, including a data structure of a trie augmented by data stacks for minimum element retrieval, and the technique of step tomonoid elimination in reducing the retrieval depth in a trie of stacks structure.
25

A new quadratic formulation for incremental timing-driven placement / Uma nova formulação quadrática para posicionamento inncremental guiado à tempos de programação

Fogaça, Mateus Paiva January 2016 (has links)
O tempo de propagação dos sinais nas interconexões é um fator dominante para atingir a frequência de operação desejada em circuitos nanoCMOS. Durante a síntese física, o posicionamento visa espalhar as células na área disponível enquanto otimiza uma função custo obedecendo aos requisitos do projeto. Portanto, o posicionamento é uma etapa chave na determinação do comprimento total dos fios e, consequentemente, na obtenção da frequência de operação desejada. Técnicas de posicionamento incremental visam melhorar a qualidade de uma dada solução. Neste trabalho, são propostas duas abordagens para o posicionamento incremental guiado à tempos de propagação através de suavização de caminhos e balanceamento de redes. Ao contrário dos trabalhos existentes na literatura, a formulação proposta inclui um modelo de atraso na função quadrática. Além disso, o posicionamento quadrático é aplicado incrementalmente através de uma operação, chamada de neutralização, que ajuda a manter as qualidades da solução inicial. Em ambas as técnicas, o comprimento quadrático de fios é ponderado pelo drive strength das células e a criticalidade dos pinos. Os resultados obtidos superam o estado-da-arte em média 9,4% e 7,6% com relação ao WNS e TNS, respectivamente. / The interconnection delay is a dominant factor for achieving timing closure in nanoCMOS circuits. During physical synthesis, placement aims to spread cells in the available area while optimizing an objective function w.r.t. the design constraints. Therefore, it is a key step to determine the total wirelength and hence to achieve timing closure. Incremental placement techniques aim to improve the quality of a given solution. Two quadratic approaches for incremental timing driven placement to mitigate late violations through path smoothing and net load balancing are proposed in this work. Unlike previous works, the proposed formulations include a delay model into the quadratic function. Quadratic placement is applied incrementally through an operation called neutralization which helps to keep the qualities of the initial placement solution. In both techniques, the quadratic wirelength is pondered by cell’s drive strengths and pin criticalities. The final results outperform the state-of-art by 9.4% and 7.6% on average for WNS and TNS, respectively.
26

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.
27

Méthodologies de conception ASIC pour des systèmes sur puce 3D hétérogènes à base de réseaux sur puce 3D / ASIC Design Methodologies for 3D NOC Based 3D Heterogeneous Multiprocessor on Chip

Jabbar, Mohamad 21 March 2013 (has links)
Dans cette thèse, nous étudions les architectures 3D NoC grâce à des implémentations de conception physiques en utilisant la technologie 3D réel mis en oeuvre dans l'industrie. Sur la base des listes d'interconnexions en déroute, nous procédons à l'analyse des performances d'évaluer le bénéfice de l'architecture 3D par rapport à sa mise en oeuvre 2D. Sur la base du flot de conception 3D proposé en se concentrant sur la vérification temporelle tirant parti de l'avantage du retard négligeable de la structure de microbilles pour les connexions verticales, nous avons mené techniques de partitionnement de NoC 3D basé sur l'architecture MPSoC y compris empilement homogène et hétérogène en utilisant Tezzaron 3D IC technlogy. Conception et mise en oeuvre de compromis dans les deux méthodes de partitionnement est étudiée pour avoir un meilleur aperçu sur l'architecture 3D de sorte qu'il peut être exploitée pour des performances optimales. En utilisant l'approche 3D homogène empilage, NoC topologies est explorée afin d'identifier la meilleure topologie entre la topologie 2D et 3D pour la mise en œuvre MPSoC 3D sous l'hypothèse que les chemins critiques est fondée sur les liens inter-routeur. Les explorations architecturales ont également examiné les différentes technologies de traitement. mettant en évidence l'effet de la technologie des procédés à la performance d'architecture 3D en particulier pour l'interconnexion dominant du design. En outre, nous avons effectué hétérogène 3D d'empilage pour la mise en oeuvre MPSoC avec l'approche GALS de style et présenté plusieurs analyses de conception physiques connexes concernant la conception 3D et la mise en œuvre MPSoC utilisant des outils de CAO 2D. Une analyse plus approfondie de l'effet microbilles pas à la performance de l'architecture 3D à l'aide face-à-face d'empilement est également signalé l'identification des problèmes et des limitations à prendre en considération pendant le processus de conception. / In this thesis, we study the exploration 3D NoC architectures through physical design implementations using real 3D technology used in the industry. Based on the proposed 3D design flow focusing on timing verification by leveraging the benefit of negligible delay of microbumps structure for vertical connections, we have conducted partitioning techniques for 3D NoC-based MPSoC architecture including homogeneous and heterogeneous stacking using Tezzaron 3D IC technlogy. Design and implementation trade-off in both partitioning methods is investigated to have better insight about 3D architecture so that it can be exploited for optimal performance. Using homogeneous 3D stacking approach, NoC architectures are explored to identify the best topology between 2D and 3D topology for 3D MPSoC implementation. The architectural explorations have also considered different process technologies highlighting the wire delay effect to the 3D architecture performance especially for interconnect-dominated design. Additionally, we performed heterogeneous 3D stacking of NoC-based MPSoC implementation with GALS style approach and presented several physical designs related analyses regarding 3D MPSoC design and implementation using 2D EDA tools. Finally we conducted an exploration of 2D EDA tool on different 3D architecture to evaluate the impact of 2D EDA tools on the 3D architecture performance. Since there is no commercialize 3D design tool until now, the experiment is important on the basis that designing 3D architecture using 2D EDA tools does not have a strong and direct impact to the 3D architecture performance mainly because the tools is dedicated for 2D architecture design.
28

A new quadratic formulation for incremental timing-driven placement / Uma nova formulação quadrática para posicionamento inncremental guiado à tempos de programação

Fogaça, Mateus Paiva January 2016 (has links)
O tempo de propagação dos sinais nas interconexões é um fator dominante para atingir a frequência de operação desejada em circuitos nanoCMOS. Durante a síntese física, o posicionamento visa espalhar as células na área disponível enquanto otimiza uma função custo obedecendo aos requisitos do projeto. Portanto, o posicionamento é uma etapa chave na determinação do comprimento total dos fios e, consequentemente, na obtenção da frequência de operação desejada. Técnicas de posicionamento incremental visam melhorar a qualidade de uma dada solução. Neste trabalho, são propostas duas abordagens para o posicionamento incremental guiado à tempos de propagação através de suavização de caminhos e balanceamento de redes. Ao contrário dos trabalhos existentes na literatura, a formulação proposta inclui um modelo de atraso na função quadrática. Além disso, o posicionamento quadrático é aplicado incrementalmente através de uma operação, chamada de neutralização, que ajuda a manter as qualidades da solução inicial. Em ambas as técnicas, o comprimento quadrático de fios é ponderado pelo drive strength das células e a criticalidade dos pinos. Os resultados obtidos superam o estado-da-arte em média 9,4% e 7,6% com relação ao WNS e TNS, respectivamente. / The interconnection delay is a dominant factor for achieving timing closure in nanoCMOS circuits. During physical synthesis, placement aims to spread cells in the available area while optimizing an objective function w.r.t. the design constraints. Therefore, it is a key step to determine the total wirelength and hence to achieve timing closure. Incremental placement techniques aim to improve the quality of a given solution. Two quadratic approaches for incremental timing driven placement to mitigate late violations through path smoothing and net load balancing are proposed in this work. Unlike previous works, the proposed formulations include a delay model into the quadratic function. Quadratic placement is applied incrementally through an operation called neutralization which helps to keep the qualities of the initial placement solution. In both techniques, the quadratic wirelength is pondered by cell’s drive strengths and pin criticalities. The final results outperform the state-of-art by 9.4% and 7.6% on average for WNS and TNS, respectively.
29

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.
30

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.

Page generated in 0.0626 seconds