• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Expression of oncogenes in human colorectal neoplasms

Williams, Alistair Robert William January 1988 (has links)
No description available.
2

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.
3

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.
4

Electromigration aware cell design / Projeto de células considerando a eletromigração

Posser, Gracieli January 2015 (has links)
A Eletromigração (EM) nas interconexões de metal em um chip é um mecanismo crítico de falhas de confiabilidade em tecnologias de escala nanométrica. Os trabalhos na literatura que abordam os efeitos da EM geralmente estão preocupados com estes efeitos nas redes de distribuição de potência e nas interconexões entre as células. Este trabalho aborda o problema da EM em outro aspecto, no interior das células, e aborda especificamente o problema da eletromigração em interconexões de saída, Vdd e Vss dentro de uma célula padrão onde há poucos estudos na literatura que endereçam esse problema. Até onde sabe-se, há apenas dois trabalhos na literatura que falam sobre a EM no interior das células. (DOMAE; UEDA, 2001) encontrou buracos formados pela EM nas interconexões de um inversor CMOS e então propôs algumas ideias para reduzir a corrente nos segmentos de fio onde formaram-se buracos. O outro trabalho, (JAIN; JAIN, 2012), apenas cita que a EM no interior das células padrão deve ser verificada e a frequência segura das células em diferentes pontos de operação deve ser modelada. Nenhum trabalho da literatura analisou e/ou modelou os efeitos da EM nos sinais dentro das células. Desta forma, este é o primeiro trabalho a usar o posicionamento dos pinos para reduzir os efeitos da EM dentro das células. Nós modelamos a eletromigração no interior das células incorporando os efeitos de Joule heating e a divergência da corrente e este modelo é usado para analisar o tempo de vida de grandes circuitos integrados. Um algoritmo eficiente baseado em grafos é desenvolvido para acelerar a caracterização da EM no interior das células através do cálculos dos valores de corrente média e RMS. Os valores de corrente computados por esse algoritmo produzem um erro médio de 0.53% quando comparado com os valores dados por simulações SPICE. Um método para otimizar a posição dos pinos de saída, Vdd e Vss das células e consequentemente otimizar o tempo de vida do circuito usando pequenas modificações no leiaute é proposto. Para otimizar o TTF dos circuitos somente o arquivo LEF é alterado para evitar as posições de pino críticas, o leiaute da célula não é alterado. O tempo de vida do circuito pode ser melhorado em até 62.50% apenas evitando as posições de pino críticas da saída da célula, 78.54% e 89.89% evitando as posições críticas do pino de Vdd e Vss, respectivamente Quando as posições dos pinos de saída, Vdd e Vss são otimizadas juntas, o tempo de vida dos circuitos pode ser melhorado em até 80.95%. Além disso, nós também mostramos o maior e o menor tempo de vida sobre todos as posições candidatas de pinos para um conjunto de células, onde pode ser visto que o tempo de vida de uma célula pode ser melhorado em até 76 pelo posicionamento do pino de saída. Além disso, alguns exemplos são apresentados para explicar porque algumas células possuem uma melhora maior no TTF quando a posição do pino de saída é alterada. Mudanças para otimizar o leiaute das células são sugeridas para melhorar o tempo de vida das células que possuem uma melhora muito pequena no TTF através do posicionamento dos pinos. A nível de circuito, uma análise dos efeitos da EM é apresentada para as diferentes camadas de metal e para diferentes comprimentos de fios para os sinais (nets) que conectam as células. / Electromigration (EM) in on-chip metal interconnects is a critical reliability failure mechanism in nanometer-scale technologies. Usually works in the literature that address EM are concerned with power network EM and cell to cell interconnection EM. This work deals with another aspect of the EM problem, the cell-internal EM. This work specifically addresses the problem of electromigration on signal interconnects and on Vdd and Vss rails within a standard cell. Where there are few studies in the literature addressing this problem. To our best knowledge we just found two works in the literature that talk about the EM within a cell. (DOMAE; UEDA, 2001) found void formed due to electromigration in the interconnection portion in a CMOS inverter and then proposes some ideas to reduce the current through the wire segments where the voids were formed. The second work, (JAIN; JAIN, 2012), just cites that the standard-cell-internal-EM should be checked and the safe frequency of the cells at different operating points must be modeled. No previous work analyzed and/or modeled the EM effects on the signals inside the cells. In this way, our work is the first one to use the pin placement to reduce the EM effects inside of the cells. In this work, cell-internal EM is modeled incorporating Joule heating effects and current divergence and is used to analyze the lifetime of large benchmark circuits. An efficient graph-based algorithm is developed to speed up the characterization of cell-internal EM. This algorithm estimates the currents when the pin position is moved avoiding a new characterization for each pin position, producing an average error of just 0.53% compared to SPICE simulation. A method for optimizing the output, Vdd and Vss pin placement of the cells and consequently to optimize the circuit lifetime using minor layout modifications is proposed. To optimize the TTF of the circuits just the LEF file is changed avoiding the critical pin positions, the cell layout is not changed. The circuit lifetime could be improved up to 62.50% at the same area, delay, and power because changing the pin positions affects very marginally the routing. This lifetime improvement is achieved just avoiding the critical output pin positions of the cells, 78.54% avoiding the critical Vdd pin positions, 89.89% avoiding the critical Vss pin positions and up to 80.95% (from 1 year to 5.25 years) when output, Vdd, and Vss pin positions are all optimized simultaneously. We also show the largest and smallest lifetimes over all pin candidates for a set of cells, where the lifetime of a cell can be improved up to 76 by the output pin placement. Moreover, some examples are presented to explain why some cells have a larger TTF improvement when the output pin position is changed. Cell layout optimization changes are suggested to improve the lifetime of the cells that have a very small TTF improvement by pin placement. At circuit level, we present an analysis of the EM effects on different metal layers and different wire lengths for signal wires (nets) that connect cells.
5

Simultaneous Quantification and Visualization of Titanium Dioxide Nanomaterial Uptake at the Single Cell Level in an In Vitro Model of the Human Small Intestine

Meyer, Thomas, Venus, Tom, Sieg, Holger, Böhmert, Linda, Kunz, Birgitta M., Krause, Benjamin, Jalili, Pegah, Hogeveen, Kevin, Chevance, Soizic, Gauffre, Fabienne, Burel, Agnes, Jungnickel, Harald, Tentschert, Jutta, Laux, Peter, Luch, Andreas, Braeuning, Albert, Lampen, Alfonso, Fessard, Valerie, Meijer, Jan, Estrela-Lopis, Irina 12 May 2020 (has links)
Useful properties render titanium dioxide nanomaterials (NMs) to be one of the most commonly used NMs worldwide. TiO2 powder is used as food additives (E171), which may contain up to 36% nanoparticles. Consequently, humans could be exposed to comparatively high amounts of NMs that may induce adverse effects of chronic exposure conditions. Visualization and quantification of cellular NM uptake as well as their interactions with biomolecules within cells are key issues regarding risk assessment. Advanced quantitative imaging tools for NM detection within biological environments are therefore required. A combination of the label-free spatially resolved dosimetric tools, microresolved particle induced X-ray emission and Rutherford backscattering, together with high resolution imaging techniques, such as time-of-flight secondary ion mass spectrometry and transmission electron microscopy, are applied to visualize the cellular translocation pattern of TiO2 NMs and to quantify the NM-load, cellular major, and trace elements in differentiated Caco-2 cells as a function of their surface properties at the single cell level. Internalized NMs are not only able to impair the cellular homeostasis by themselves, but also to induce an intracellular redistribution of metabolically relevant elements such as phosphorus, sulfur, iron, and copper.
6

Gene expression profiling in different stages of development of Arabidopsis thaliana leaftrichomes at the single cell level

Kryvych, Sergiy January 2007 (has links)
Each organ of a multicellular organism is unique at the level of its tissues and cells. Furthermore, responses to environmental stimuli or developmental signals occur differentially at the single cell or tissue level. This underlines the necessity of precise investigation of the “building block of life” -the individual cell. Although recently large amount of data concerning different aspects of single cell performance was accumulated, our knowledge about development and differentiation of individual cell within specialized tissue are still far from being complete. To get more insight into processes that occur in certain individual cell during its development and differentiation changes in gene expression during life cycle of A. thaliana leaf hair cell (trichome) were explored in this work. After onset of trichome development this cell changes its cell cycle: it starts endoreduplication (a modified cell cycle in which DNA replication continues in the absence of mitosis and cytokinesis). This makes trichomes a suitable model for studying cell cycle regulation, regulation of cell development and differentiation. Cells of interest were sampled by puncturing them with glass microcapillaries. Each sample contained as few as ten single cells. At first time trichomes in initial stage of trichome development were investigated. To allow their sampling they were specifically labelled by green fluorescent protein (GFP). In total three cell types were explored: pavement cells, trichome initials and mature trichomes. Comparison of gene expression profiles of these cells allowed identification of the genes differentially expressed in subsequent stages of trichome development. Bioinformatic analysis of genes preferentially expressed in trichome initials showed their involvement in hormonal, metal, sulphur response and cell-cycle regulation. Expression pattern of three selected candidate genes, involved in hormonal response and early developmental processes was confirmed by independent method. Effects of mutations in these genes on both trichome and plant development as well as on plant metabolism were analysed. As an outcome of this work novel components in the sophisticated machinery of trichome development and cell cycle progression were identified. These factors could integrate hormone stimuli and network interactions between characterized and as yet unknown members of this machinery. I expect findings presented in this work to enhance and complement our current knowledge about cell cycle progression and trichome development, as well as about performance of the individual cell in general. / Jedes Organ eines vielzelligen Organismus weißt einzigartige Merkmale auf seiner Gewebe und Zellebene auf. Darüber hinaus, werden entwicklungsabhängige sowie aus der Umwelt empfangene Signale zelltypspezifisch interpretiert. Aus dieser Spezialisierung einzelner Zellen ergibt sich somit unmittelbar die Notwendigkeit einzelne Zellen, als Bausteine komplexer Organe, individuell zu untersuchen. Obwohl in den letzten Jahrzehnten große Datenmengen über verschiedene Aspekte einzelner Zellen akkumuliert wurden, ist das Gesamtbild der Differenzierung und Entwicklung individueller Zellen in einem vielzelligen Organismus weitgehend unbekannt. Um der Frage nachzugehen, welche Prozesse sich in einer einzelnen Zelle während ihrer Differenzierung und Entwicklung abspielen, wurden Genexpressionsprofile einzelner Blatthaarzellen der Pflanze Arabidopsis thaliana in verschiedene Entwicklungsstadien erstellt. Nach dem Beginn der Entwicklung einer Protodermalzelle in ein Blatthaar (Trichom) kommt es zu einem Umschalten des Zellzyklus; Endoreduplikation setzt ein. Dies bedeutet, dass DNA repliziert wird, aber keine Zellteilung mehr stattfindet. Aus diesem Grunde eignen sich heranwachsende Trichome besonders gut Mechanismen zu erforschen, die in Verbindung mit der Zellzyklusregulation und Zellentwicklung stehen. Die Inhalte ausgewählter Einzelzellen wurden mit Glasmikrokapillaren extrahiert. Jeweils zehn derartige Einzelzellextrakte wurden daraufhin vereint. Als besonders hervorzuheben gilt, dass es uns in dieser Studie zum ersten mal überhaupt gelang die Inhalte einzelner Trichomzellen in ganz frühen Entwicklungsstadien zu extrahieren und anschließend zu analysieren. Um die Extraktion der Inhalte dieser frühen Zellstadien überhaupt zu ermöglichen, war es erforderlich diese mit dem grün fluoreszierenden Protein (GFP) zu markieren. Neben den Trichominitialzellen wurden ausgewachsene Trichomzellen sowie Epidermiszellen (Pavementzellen) mittels der Einzelzelltechnik untersucht. Ein Vergleich der erstellten Genexpressionsprofile dieser drei Zelltypen ermöglichte es Gene zu identifizieren, die in den ausgewählten Entwicklungsstadien der Trichombildung differentiell induziert wurden. Mittels bioinformatischer Analysemethoden gelang es, Gruppen von Genen zu identifieren, die exklusiv in Trichominitialzellen exprimiert sind und den Kategorien, Hormonregulation, Metallhomeostase, Schwefelstoffwechesol sowie Zellzyklusregulation zuzuordnen sind. Weiterhin wurde das Expressionsmuster dreier ausgewählter Kandidatengene mit alternativen Techniken verifiziert. Die ausgewählten Kandidatengene gehörten den Katergorien, Hormonrespons sowie frühe Entwicklungsprozesse, an. Darüber hinaus wurden Mutanten in allen drei Gene erzeugt und der Einfluss dieser Mutationen auf die Trichomentwicklung analysiert. Ein weiterer Aspekt der Mutantenanalyse lag in der Erstellung von Metabolitenprofilen ausgewählter Mutanten. Als ein wesentliches Ziel dieser Arbeit gelang es mir bisher unbekannte Komponenten in der Trichomentwicklung und damit der Zellzyklusregulation zu identifizieren. Diese neu identifizierten Komponenten führen zu einer Integration der hormonellen Kontrolle der Zellteilung und Entwicklung mit bisher unbekannten Faktoren. Ich erwarte, dass die von mir erbrachten Ergebnisse zu einem tieferen Verständnis der Prozesse, die an der Trichomentwicklung sowie an der Zellzyklusregulation beteiligt sind, beitragen. Insbesondere, zu einem erweiterten Verständnis des Verhaltens individueller Zellen in einem vielzelligen Organismus.
7

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.
8

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.

Page generated in 0.0789 seconds