• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stochastic and Robust Optimal Operation of Energy-Efficient Building with Combined Heat and Power Systems

Liu, Ping 13 December 2014 (has links)
Energy efficiency and renewable energy become more attractive in smart grid. In order to efficiently reduce global energy usage in building energy systems and to improve local environmental sustainability, it is essential to optimize the operation and the performance of combined heat and power (CHP) systems. In addition, intermittent renewable energy and imprecisely predicted customer loads have introduced great challenges in energy-efficient buildings' optimal operation. In the deterministic optimal operation, we study the modeling of components in energy-efficient building systems, including the power grid interface, CHP and boiler units, energy storage devices, and building appliances. The mixed energy resources are applied to collaboratively supply both electric and thermal loads. The results show that CHP can effectively improve overall energy efficiency by coordinating electric and thermal power supplies. Through the coordinated operation of all power sources, the daily operation cost of building energy system for generating energy can be significantly reduced. In order to address the risk from energy consumption forecast errors and renewable energy production volatility, we utilize the approach of stochastic programming and robust optimizations to operate energy-efficient building systems under uncertainty. The multi-stage stochastic programming model is introduced so that the reliable operation of building energy systems would be probabilistically guaranteed with stochastic decisions. The simulation results show that the stochastic operation of building energy systems is a promising strategy to account for the impact of the uncertainty on power dispatch decisions of energy-efficient building systems. In order to provide absolute guarantee for the reliable operation of building energy systems, a robust energy supply to electric and thermal loads is studied by exploring the effectiveness of energy storage on energy supply against the uncertainty. The robustness can be adjusted to control the conservativeness of the proposed robust operation model. For the purpose of achieving adaptability in the robust optimal operation and attaining robustness in the stochastic optimal operation of building energy systems, we also develop an innovative robust stochastic optimization (RSO) model. The proposed RSO model not only overcomes the conservativeness in the robust operation model, but also circumvents the curse of dimensionality in the stochastic operation model.
2

Development of a Bayesian network model for assessing the resilience of biomass-based combined heat and power system

Alzahrani, Omar 30 April 2021 (has links) (PDF)
Due to the growing number of diverse power systems disruptions, including extreme weather events, technical factors, and human factors, assessing and quantifying the resilience of electric power subsystems has become an indispensable step to develop an efficient strategic plan to enhance the resilience and reliability of these systems and to endure the diverse interruptions. In this study, factors and sub-factors that may have either direct or indirect impact on the resilience of biomass-based combined heat and power systems are identified, and the interdependencies among them are determined as well. A Bayesian network model is implemented to quantify the resilience of a bCHP system, and the results are analyzed by applying three different techniques, which are sensitivity analysis, forward propagation analysis, and backward propagation analysis.
3

Development of Direct Internal Reforming Solid Oxide Fuel Cell Model and its Applications for Biomass Power Generation / 直接内部改質を伴う固体酸化物形燃料電池モデルの開発とバイオマス発電への適用

WONGCHANAPAI, Suranat 25 March 2013 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17560号 / 工博第3719号 / 新制||工||1566(附属図書館) / 30326 / 京都大学大学院工学研究科航空宇宙工学専攻 / (主査)教授 吉田 英生, 教授 中部 主敬, 准教授 松本 充弘 / 学位規則第4条第1項該当
4

System Study and CO2 Emissions Analysis of a Waste Energy Recovery System for Natural Gas Letdown Station Application

BABASOLA, ADEGBOYEGA 31 August 2010 (has links)
A CO2 emission analysis and system investigation of a direct fuel cell waste energy recovery and power generation system (DFC-ERG) for pressure letdown stations was undertaken. The hybrid system developed by FuelCell Energy Inc. is an integrated turboexpander and a direct internal reforming molten carbonate fuel cell system in a combined circle. At pressure letdown stations, popularly called city gates, the pressure of natural gas transported on long pipelines is reduced by traditional pressure regulating systems. Energy is lost as a result of pressure reduction. Pressure reduction also results in severe cooling of the gas due to the Joule Thompson effect, thus, requiring preheating of the natural gas using traditional gas fired-burners. The thermal energy generated results in the emission of green house gases. The DFC-ERG system is a novel waste energy recovery and green house gas mitigation system that can replace traditional pressure regulating systems on city gates. A DFC-ERG system has been simulated using UniSim Design process simulation software. A case study using data from Utilities Kingston’s city gate at Glenburnie was analysed. The waste energy recovery system was modelled using the design specifications of the FuelCell Energy Inc’s DFC 300 system and turboexpander design characteristics of Cryostar TG120. The Fuel Cell system sizing was based on the required thermal output, electrical power output, available configuration and cost. The predicted performance of the fuel cell system was simulated at a current density of 140mA/cm2, steam to carbon ratio of 3, fuel utilization of 75% and oxygen utilization of 30%. The power output of the turboexpander was found to strongly depend on the high pressure natural gas flowrate, temperature and pressure. The simulated DFC-ERG system was found to reduce CO2 emissions when the electrical power generated by the DFC-ERG system replaced electrical power generated by a coal fired plant. / Thesis (Master, Chemical Engineering) -- Queen's University, 2010-08-31 02:02:11.392
5

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.
6

Performance Simulation of Planar Solid Oxide Fuel Cells

Farhad, Siamak 30 August 2011 (has links)
The performance of solid oxide fuel cells (SOFCs) at the cell and system levels is studied using computer simulation. At the cell level, a new model combining the cell micro and macro models is developed. Using this model, the microstructural variables of porous composite electrodes can be linked to the cell performance. In this approach, the electrochemical performance of porous composite electrodes is predicted using a micro-model. In the micro-model, the random-packing sphere method is used to estimate the microstructural properties of porous composite electrodes from the independent microstructural variables. These variables are the electrode porosity, thickness, particle size ratio, and size and volume fraction of electron-conducting particles. Then, the complex interdependency among the multi-component mass transport, electron and ion transports, and the electrochemical and chemical reactions in the microstructure of electrodes is taken into account to predict the electrochemical performance of electrodes. The temperature distribution in the solid structure of the cell and the temperature and species partial pressure distributions in the bulk fuel and air streams are predicted using the cell macro-model. In the macro-model, the energy transport is considered for the cell solid structure and the mass and energy transports are considered for the fuel and air streams. To demonstrate the application of the cell level model developed, entitled the combined micro- and micro-model, several anode-supported co-flow planar cells with a range of microstructures of porous composite electrodes are simulated. The mean total polarization resistance, the mean total power density, and the temperature distribution in the cells are predicted. The results of this study reveal that there is an optimum value for most of the microstructural variables of the electrodes at which the mean total polarization resistance of the cell is minimized. There is also an optimum value for most of the microstructural variables of the electrodes at which the mean total power density of the cell is maximized. The microstructure of porous composite electrodes also plays a significant role in the mean temperature, the temperature difference between the hottest and coldest spots, and the maximum temperature gradient in the solid structure of the cell. Overall, using the combined micro- and micro-model, an appropriate microstructure for porous composite electrodes to enhance the cell performance can be designed. At the system level, the full load operation of two SOFC systems is studied. To model these systems, the basic cell model is used for SOFCs at the cell level, the repeated-cell stack model is used for SOFCs at the stack level, and the thermodynamic model is used for the balance of plant components of the system. In addition to these models, a carbon deposition model based on the thermodynamic equilibrium assumption is employed. For the system level model, the first SOFC system considered is a combined heat and power (CHP) system that operates with biogas fuel. The performance of this system at three different configurations is evaluated. These configurations are different in the fuel processing method to prevent carbon deposition on the anode catalyst. The fuel processing methods considered in these configurations are the anode gas recirculation (AGR), steam reforming (SR), and partial oxidation reformer (POX) methods. The application of this system is studied for operation in a wastewater treatment plant (WWTP) and in single-family detached dwellings. The evaluation of this system for operation in a WWTP indicates that if the entire biogas produced in the WWTP is used in the system with AGR or SR fuel processors, the electric power and heat required to operate the plant can be completely supplied and the extra electric power generated can be sold to the electrical grid. The evaluation of this system for operation in single-family detached dwellings indicates that, depending on the size, location, and building type and design, this system with all configurations studied is suitable to provide the domestic hot water and electric power demands. The second SOFC system is a novel portable electric power generation system that operates with liquid ammonia fuel. Size, simplicity, and high electrical efficiency are the main advantages of this environmentally friendly system. Using a sensitivity analysis, the effects of the cell voltage at several fuel utilization ratios on the number of cells required for the SOFC stack, system efficiency and voltage, and excess air required for thermal management of the SOFC stack are studied.

Page generated in 0.1075 seconds