Return to search

High performance RF and baseband building blocks for wireless receivers

Because of the unique architecture of wireless receivers, a designer must
understand both the high frequency aspects as well as the low-frequency analog
considerations for different building blocks of the receiver. The primary goal of this
research work is to explore techniques for implementing high performance RF and
baseband building blocks for wireless applications. Several novel techniques to improve
the performance of analog building blocks are presented. An enhanced technique to
couple two LC resonators is presented which does not degrade the loaded quality factor
of the resonators which results in an increased dynamic range.
A novel technique to automatically tune the quality factor of LC resonators is
presented. The proposed scheme is stable and fast and allows programming both the
quality factor and amplitude response of the LC filter.
To keep the oscillation amplitude of LC VCOs constant and thus achieving a
minimum phase noise and a reliable startup, a stable amplitude control loop is presented.
The proposed scheme has been also used in a master-slave quality factor tuning of LC
filters.
An efficient and low-cost architecture for a 3.1GHz-10.6GHz ultra-wide band
frequency synthesizer is presented. The proposed scheme is capable of generating 14A novel pseudo-differential transconductance amplifier is presented. The
proposed scheme takes advantage of the second-order harmonic available at the output
current of pseudo-differential structure to cancel the third-order harmonic distortion.
A novel nonlinear function is proposed which inherently removes the third and
the fifth order harmonics at its output signal. The proposed nonlinear block is used in a
bandpass-based oscillator to generate a highly linear sinusoidal output.
Finally, a linearized BiCMOS transconductance amplifier is presented. This
transconductance is used to build a third-order linear phase low pass filter with a cut-off
frequency of 264MHz for an ultra-wide band receiver.
carrier frequencies.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/5818
Date17 September 2007
CreatorsBahmani, Faramarz
ContributorsEdgar, Sanchez-Sinencio.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Format3342751 bytes, electronic, application/pdf, born digital

Page generated in 0.0021 seconds