Return to search

Design techniques for high intermediate frequency bandpass (sigma/delta) modulator.

The focus of the present thesis is the circuit-level implementation of an excess
loop delay compensation scheme which optimizes excess loop delay in Analog-to-Digital Converter(ADC) by using a programmable delay block and synchronizes the
signal passing through Dynamic Element Matching block, used to mitigate mismatch
effects of multi-bit Digital-to-Analog Converter(DAC). The proposed delay block
has tuning range of T/10 to T/2 seconds, with a step size of T/30 seconds, where
T is the time period (1.25 nanoseconds) of sampling signal (800 MHz) in high IF
(200 MHz) Bandpass [sigma delta] ADC. The implementation details of the element rotation
scheme used to calibrate the multi-bit DAC static error mismatch are also presented.
Also presented is the design of high frequency highly linear Operational Transconductance
Amplifier(OTA) targeted for continuous-time filters in a high resolution
High Intermediate Frequency (200 MHz) Bandpass [sigma delta] ADC for Software Radio
applications. Proposed OTA uses super source follower input stage to enhance its
voltage-to-current conversion linearity. The design has been simulated using TSMC
0.18 μm CMOS process. The OTA has small signal transconductance of 0.9 mA/V,
IM3 below -79 dB (for 0.3 Vpp input), Signal-to-Noise Ratio of 82 dB and power
consumption of 6.8 mW, when tested in unity gain configuration.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/86025
Date10 October 2008
CreatorsKode, Praveena
ContributorsJose, Silva M.
PublisherTexas A&M University
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Thesis, text
Formatelectronic, born digital

Page generated in 0.0021 seconds